'Email':['tom@pandasdataframe.com','nick@pandasdataframe.com','john@pandasdataframe.com','tom@pandasdataframe.com']}df=pd.DataFrame(data,index=['a','b','c','d'])filtered_df=df.filter(items=['a','c'],axis=0)print(filtered_df)...
使用loc[]进行多行多列选取:例如df.loc[row_labels, col_labels]表示选取行标签在row_labels中,列标签在col_labels中的所有行数据。 使用ix[]进行基于位置和标签的选取:例如df.ix[row_index, col_label]表示选取第row_index行,列标签为col_label的数据。三、FilterFilter函数用于根据指定条件对DataFrame进行过滤,...
importpandasaspd# 创建 DataFrame 并设置索引df = pd.DataFrame({'A': [1,2,3],'B': [4,5,6],'C': [7,8,9] }, index=['row1','row2','row3'])# 保留指定行 'row1' 和 'row3'filtered_df = df.filter(items=['row1','row3'], axis=0) print(filtered_df)...
importpandasaspd data={ "name":["Sally","Mary","John"], "age":[50,40,30], "qualified":[True,False,False] } df=pd.DataFrame(data) newdf=df.filter(items=["name","age"]) print(newdf) 运行一下 定义与用法 filter()方法筛选 DataFrame ,并仅返回在筛选器中指定的行或列。
Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。本文主要介绍一下Pandas中pandas.DataFrame.filter方法的使用。
ref: Ways to filter Pandas DataFrame by column valuesFilter by Column Value:To select rows based on a specific column value, use the index chain method. For example, to filter rows where sales are over 300: Pythongreater_than = df[df['Sales'] > 300]...
PandasDataFrame.filter(~)方法返回标签与指定模式匹配的行或列。 警告 该方法根据列/行的标签而不是实际数据应用过滤。 参数 1.items|list-like|optional 提取items中包含标签的行或列。 2.like|string|optional 提取标签包含like的行或列。 3.regex|string(正则表达式)|optional ...
2.Pandas中的DataFrame.filter() DataFrame.filter(items=None, like=None, regex=None, axis=None) #items对行/列进行筛选 #regex表示用正则进行匹配 #like进行筛选 #axis=0表示对行操作,axis=1表示对列操作 #items对列进行筛选 df.filter(items=['one', 'three']) one three teacher 1 3 student 4 6...
Dropping a row in pandas DataFrame if any value in row becomes 0 Selecting pandas column by location Data Normalization in Pandas Set Order of Columns in Pandas DataFrame Creating a new column based on if-elif-else condition How to perform cartesian product in pandas?
Python是进行数据分析的一种出色语言,主要是因为以数据为中心的python软件包具有奇妙的生态系统。 Pandas是其中的一种,使导入和分析数据更加容易。 Pandasdataframe.filter()函数用于根据指定索引中的标签对 DataFrame 的行或列进行子集。请注意,此例程不会在其内容上过滤数据帧。过滤器将应用于索引标签。