本文基于Python仿真的电能质量扰动信号,进行快速傅里叶变换(FFT)的介绍与数据预处理,最后通过Python实现基于FFT的CNN-BiGRU-Attention并行模型对电能质量扰动信号的分类。Python仿真电能质量扰动信号的详细介绍可以参考下文(文末附10分类数据集): Python-电能质量扰动信号数据介绍与分类 - 知乎 (zhihu.com) 部分扰动信号类...
基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的轴承故障识别模型 51 -- 3:57 App 多特征变量序列预测(一)——CNN-LSTM风速预测模型 57 -- 3:36 App Python轴承故障诊断 (十)基于VMD+CNN-Transfromer的故障分类 67 -- 2:57 App Python电能质量扰动信号分类(一)基于LSTM模型的一维信号分类...
本文基于凯斯西储大学(CWRU)轴承数据,进行快速傅里叶变换(FFT)的介绍与数据预处理,最后通过Python实现基于FFT的CNN-BiGRU-Attention并行模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文: Python-凯斯西储大学(CWRU)轴承数据解读与分类处理 - 知乎 (zhihu.com) 模型整体结构 模型整体结构如下所示,一...
时频域特征注意力融合的电能质量扰动识别 | 基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的电能质量扰动识别模型 本文基于Python仿真的电能质量扰动信号,进行快速傅里叶变换(FFT)的介绍与数据预处理,最后通过Python实现基于FFT的CNN-BiGRU-Attention并行模型对电能质量扰动信号的分类。Python仿真电能质量扰动...
基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的电能质量扰动识别模型 - 知乎 (zhihu.com) 创新点:利用交叉注意力机制融合模型! 前言 本文基于Python仿真的电能质量扰动信号,进行快速傅里叶变换(FFT)的介绍与数据预处理,最后通过Python实现基于FFT的CNN-BiLSTM-CrossAttention模型对电能质量扰动信号的分类...
基于FFT + CNN - BiGRU-Attention 时域、频域特征注意力融合的电能质量扰动识别模型 - 知乎 (zhihu.com) 创新点:利用交叉注意力机制融合时频特征! 前言 本文基于Python仿真的电能质量扰动信号,进行快速傅里叶变换(FFT)的介绍与数据预处理,最后通过Python实现基于FFT的CNN-Transformer-CrossAttention模型对电能质量扰动信...