根据机器学习模型在小样本上难以学习的原因,Few-Shot Learning从三个角度解决问题,(1)通过增多训练数据提升h_I(Data)、(2)缩小模型需要搜索的空间(Model)、以及(3)优化搜索最优模型的过程(Algorithm)。 PS: 上面两张图均引自2020年香港科技大学和第四范式的paper“Generalizing from a Few Examples: A Survey o...
一、Few-Shot Learning 二、siamese network孪生网络 三、Pretrain and Fine Tuning 四、Tricks 前言 Few-shot Learning顾名思义就是用很少的样本去做分类或者回归。举个简单的例子:假如现在有一个Support Set只有四张图片,前两张是犰狳(读音:qiú yú),又称“铠鼠”。后面两张是穿山甲,不用在乎太在意是否认识这...
定义:Few-shot learning是指,给定一个有特定于任务 T 的包含少量可用的有监督信息的数据集 D_{T} 和与T 不相关的辅助数据集 D_{A} ,小样样本学习的目标是为任务 T 构建函数 f ,该任务的完成利用了 D_{T} 中很少的监督信息和 D_{A} 中的知识,完成将输入映射到目标的任务。 上述定义中与 T 不相关...
早期的 Few-shot Learning 算法研究主要集中在小样本图像识别的任务上,以 MiniImage 和 Omnigraffle 两个数据集为代表。 近年来,在自然语言处理领域也开始出现 Few-shot Learning 的数据集和模型,相比于图像,文本的语义中包含更多的变化和噪声,我们将在本节从数据集和模型两个方面介绍 Few-shot Learning 在自然语言...
早期的 Few-shot Learning 算法研究主要集中在小样本图像识别的任务上,以 MiniImage 和 Omnigraffle 两个数据集为代表。 近年来,在自然语言处理领域也开始出现 Few-shot Learning 的数据集和模型,相比于图像,文本的语义中包含更多的变化和噪声,我们将在本节从数据集和模型两个方面介绍 Few-shot Learning 在自然语言...
少量样本学习(Few-Shot Learning)和零样本学习(Zero-Shot Learning)是近些年来在机器学习领域中备受关注的研究方向。这些方法的出现为解决某些特定问题提供了全新的视角,尤其是在数据稀缺的场景下。这两种学习方法的核心思想是,在不需要大量标注数据的情况下,依然能够训练出高效且表现优异的模型。这种能力在实际应用中具有...
小样本学习(Few-Shot Learning)(一) 1. 前言 本文讲解小样本学习(Few-Shot Learning)基本概念及基本思路,孪生网络(Siamese Network)基本原理及训练方法。 小样本学习(Few-Shot Learning)(二)讲解小样本学习问题的Pretraining+Fine Tuning解法。 小样本学习(Few-Shot Learning)(三)使用飞桨(PaddlePaddle)基于paddle.vi...
Few-shot learning (FSL) 在机器学习领域具有重大意义和挑战性,是否拥有从少量样本中学习和概括的能力,是将人工智能和人类智能进行区分的明显分界点,因为人类可以仅通过一个或几个示例就可以轻松地建立对新事物的认知,而机器学习算法通常需要成千上万个有监督样本来保证其泛化能力。原则上我们将FSL方法分为基于生成模...
Few-shot Learning 是 Meta Learning 在监督学习领域的应用。Meta Learning,又称为learning to learn,该算法旨在让模型学会“学习”,能够处理类型相似的任务,而不是只会单一的分类任务。举例来说,对于一个LOL玩家,他可以很快适应王者荣耀的操作,并在熟悉后打出不错的战绩。人类利用已经学会的东西,可以更快的掌握...
另一方面,在一个极限推导,当Few变得越来越少时,Few-Shot Learning变成One-Shot Learning,甚至Zero-...