不同客户端的数据异质性使得整个局部数据难以与单一全局模型进行拟合,进而影响了模型的性能和收敛速度。因此,个性化联邦学习(Personalized Federated Learning, PFL) 被提出来解决上述问题。PFL的目标是为每个参与的客户共同学习一个个性化的模型,学习到的局部模型的目标是能够很好地拟合客户的不同局部数据。大多数现有的PFL...
"Federated few-shot learning for mobile NLP." Proceedings of the 29th Annual International Conference on Mobile Computing and Networking. 2023. 我是 @没饭了 ,想变得有趣的一个顶无趣的家伙。感谢您对本文的阅读,求赞求收藏求关注,您的反馈是我创作的最大动力! 编辑于 2024-05-07 21:56・IP 属地...
个性化联邦小样本学习(pFedFSL)旨在解决在客户训练样本有限情况下的个性化联邦学习问题。现有PFL解决方案通常假设客户有足够的训练样本以共同诱导个性化模型,但在小样本情况下效果不佳。同时,传统小样本学习方法要求集中训练数据,不适用于分散场景。pFedFSL通过识别哪些模型在哪些客户上表现良好,为每个客户学...
联邦学习(Federated Learning,FL)是一种利用分散数据训练机器学习(ML)模型的流行技术。已有大量著作对 FL 最终训练得到的全局模型的性能进行了研究,但仍不清楚训练过程如何影响最终测试的准确性。 联邦结点分类与可伸缩图Transformer 图被广泛用于模型关系数据。随着图在现实世界中越来越大,有一种趋势是在多个局部系统中...
Specifically, we formulate a new problem to tackle these challenges and adopt few-shot learning and federated learning to design a novel framework, termed F2LCough, for solving the newly formulated problem. We illustrate the superiority of our method compared with other approaches on COVID-19 ...
Few-shot model agnostic federated learning is a technique used in machine learning that allows multiple parties with different data sets to train a shared model without sharing the data. In traditional federated learning, each party would contribute their data to a central server where the model is...
论文阅读:LDP-FL: Practical Private Aggregation in Federated Learning with Local Differential Privacy 论文名字 LDP-FL: Practical Private Aggregation in Federated Learning with Local Differential Privacy 来源 期刊 arXiv:2007.15789v1 预印本。审查中。 年份 2020.7 作者 Lichao Sun, Jianwei Qian, Xun Chen...
Task-level self-supervision for cross-domain few-shot learning 嵌入/度量学习 Few-shot learning as cluster-induced voronoi diagrams: A geometric approach 标题:将小样本学习视为由簇诱导的Voronoi图:一种几何方法 方法介绍:小样本学习仍面临泛化能力不足的挑战,本文从几何视角出发,发现流行的 ProtoNet 模型本质...
论文笔记——Federated learning framework for mobile edge computing networks 本论文着重研究的是联邦学习应用于需求预测类问题。 一般来说,FL存在的一些问题: 非独立同分布数据。客户训练数据集各不相同,给定的本地训练数据集不代表人口分布。 不平衡数据集。每个客户的本地训练数据量不同。这意味着不同客户对训练...
we propose a few-shot federated learning framework which utilizes few samples of labeled data to train local models in each training round and aggregates all the local model weights in the central server to get a globally optimal model. for use of large scale of unlabeled data, we also desig...