Few-Shot Learning(FSL)是meta learning中的一种。而meta learning可以理解为learn to learn。 在few-shot learning中有两个常用的术语: k-way:the support set has k classes. n-shot:every class has n examples. Support set :指一个很小的数据集,比如有两类,两个样本。 FSL大体流程: 首先,在一个很大...
少量样本学习(Few-Shot Learning)和零样本学习(Zero-Shot Learning)是近些年来在机器学习领域中备受关注的研究方向。这些方法的出现为解决某些特定问题提供了全新的视角,尤其是在数据稀缺的场景下。这两种学习方法的核心思想是,在不需要大量标注数据的情况下,依然能够训练出高效且表现优异的模型。这种能力在实际应用中...
与传统的监督学习不同,few-shot leaning的目标是让机器学会学习;使用一个大型的数据集训练模型,训练完成后,给出两张图片,让模型分辨这两张图片是否属于同一种事物。比如训练数据集中有老虎、大象、汽车、鹦鹉等图片样本,训练完毕后给模型输入两张兔子的图片让模型判断是否是同一种事物,或者给模型兔子和狗的图片去判...
少样本学习(Few-Shot Learning)方法原理 最后要介绍的学习方法是少样本学习(Few-Shot Learning),它是元学习的一个子领域,旨在开发能够从少量有标签示例中学习的算法。 深度学习元学习(Deep Meta-Learning)是一种机器学习方法,旨在让机器能够学习如何快速适应新任务,而不是仅仅在已知的任务上进行训练。具体来说,元学...
Few-shot learning的最基本的思想是学一个相似性函数: 来度量两个样本 和 的相似性。 越大表明两个图片越相似, 越小,表明两个图片差距越大。 操作步骤: (1)从大规模训练数据集中学习相似性函数 (2)比较query与support set中每个样本的相似度,然后找出相似度最高的样本作为预测类别[3][5] ...
Few-shot Learning 是 Meta Learning 在监督学习领域的应用。Meta Learning,又称为 learning to learn,在 meta training 阶段将数据集分解为不同的 meta task,去学习类别变化的情况下模型的泛化能力,在 meta testing 阶段,面对全新的类别,不需要变动已有的模型,就可以完成分类。 形式化来说,few-shot 的训练集中...
下面将逐个介绍第一部分提到的Few-Shot Learning的三大思路下的方法。 2.1 增多训练数据 通过prior knowledge增多训练数据 (Experience),方法主要分为3类: (1)数据增强(Data Augmentation)类方法。较初级的数据增强方法是人工制定规则,包括对图片样本进行旋转、翻转、裁剪、增加噪音等操作,但此类方法不足以有效提升模型...
小样本学习(Few-Shot Learning)(二) 1. 前言 本文讲解小样本学习问题的Pretraining+Fine Tuning解法。 2. 预训练(Pretraining) 在小样本学习问题中,测试样本及其类别均不在训练集中,但是Support Set包含的类别是固定不变的。使用孪生网络解决小样本学习问题,会训练一个可以用来衡量图片之间相似度的神经网络,逐一比较...
Few-shot Learning 是Meta Learning在监督学习领域的应用。Meta Learning,又称为learning to learn,该算法旨在让模型学会“学习”,能够处理类型相似的任务,而不是只会单一的分类任务。 元学习 Meta Learning (元学习)中,在 meta training 阶段将数据集分解为不同的 meta task,去学习类别变化的情况下模型的泛化能力...