下图是 in-context learning (左边一列)和一般 fine-tuning (右边一列)的区别,in-context learning 不产生梯度、不会更新模型参数,而 fine-tuning 会产生梯度、更新模型参数。 需要注意区分 in-context learning 中可以有 Zero-Shot、One-Shot 和 Few-Shot 的 Setting,但和 Zero-Shot learning、One-Shot learnin...
可验证性:思维链中的每个思考步骤都应该是可以验证的,也就是说,它们应该可以通过实际的数据和事实来验证其正确性和有效性。 2.思维链用于上下文学习的方法(In-context learning) 2.1 Few-shot CoT Few-shot CoT 是 ICL 的一种特殊情况,它通过融合 CoT 推理步骤,将每个演示〈input,output〉扩充为〈input,CoT,ou...
(2023). Optimizing in-context learning for large language models. Dong等人(2023)总结了三种不同的ICL(In-Context Learning)优化方法,包括通过微调、样本选择和分析顺序敏感性来优化ICL的性能。他们强调了这些方法在提高LLMs任务解决能力方面的重要性。
Few-shot Learning 是 Meta Learning 在监督学习领域的应用。Meta Learning,又称为learning to learn,该算法旨在让模型学会“学习”,能够处理类型相似的任务,而不是只会单一的分类任务。举例来说,对于一个LOL玩家,他可以很快适应王者荣耀的操作,并在熟悉后打出不错的战绩。人类利用已经学会的东西,可以更快的掌握...
Few-ShotLearning是一种机器学习范式,旨在使模型能够在少量样本的情况下完成学习任务。通常,传统的机器学习算法需要大量的标注数据来训练模型,而Few-ShotLearning则以“少即是多”的思想,通过利用极少量的样本来实现模型的训练和泛化。 Few-ShotLearning的关键挑战: ...
讲解小样本学习(Few-Shot Learning)基本概念及基本思路,孪生网络(Siamese Network)基本原理及训练方法,Pretraining+Fine Tuning解法及实践。 - 飞桨AI Studio
面对这类问题,有一个专门的机器学习分支——Few-shot Learning 来进行研究和解决。过去一年,我们对 Few-shot Learning 进行了系统的梳理和研究,将 Few-shot Learning 和 Capsule Network 融合,提出了 Induction Network,在文本分类上做到了新的 state-of-the-art。 创新总是基于对已有成果的梳理和思考,这篇综述算...
少量样本学习(Few-Shot Learning)和零样本学习(Zero-Shot Learning)是近些年来在机器学习领域中备受关注的研究方向。这些方法的出现为解决某些特定问题提供了全新的视角,尤其是在数据稀缺的场景下。这两种学习方法的核心思想是,在不需要大量标注数据的情况下,依然能够训练出高效且表现优异的模型。这种能力在实际应用中具有...
少样本学习(Few-Shot Learning)是介于零样本学习和一次样本学习之间的方法。它允许模型在有限数量的示例下学习新的类别。相比于零样本学习,少样本学习提供了更多的训练数据,但仍然相对较少。这使得模型能够从少量示例中学习新的类别,并在面对新的输入时进行准确分类。
元学习(meta-learning)是目前广泛使用的处理小样本学习问题的方法,它的目的是在学习不同任务的过程中积累经验,从而使得模型能够快速适应新任务。比如在MAML(Model-Agnostic Meta- Learning)中,通过搜寻最优初始化状态,使得base-learner能够快速适应新任务。但是这一类元