结果发现,在 RMSE、ACC 指标上,FengWu-GHR 都展现出明显的优势,RMSE 更低,ACC 更高。 IFS 和 FengWu-GHR 的 Bias、Activity 比较 用指标 Bias 来衡量预测结果偏差,FengWu-GHR 更接近于 0,测试结果更好。用 Activity 指标来衡量随着预测时间增加,预测结果是否会变得更模糊化。结果发现,Feng
FengWu-GHR:首次实现 AI 预报分辨率提升至 0.09° 亟待解决:高分辨率和长时间误差累积 事实上,在完成 FengWu 模型的开发后,我们得到了许多气象领域专家的反馈。其中一个反馈是,尽管 FengWu 已经能够实现 0.25° 高分辨率的预测,但他们仍希望能够获得更高分辨率的气象预测结果。另一个反馈是,长时间预测带来的误差累...
结果发现,FengWu-GHR 的预测结果慢慢趋向平滑,该模型仍然没有解决对极端天气预测产生的平滑效应。 Station 评估 通过分析场的数据、18,000 个不同气象站的实时观测数据,我们使用 2022 年 7-12 月的数据对模型进行检验,以 IFS_HRES、盘古大模型作对比,FengWu-GHR 在提前任何天数得到的预测结果都占据优势地位。 热...
结果发现,FengWu-GHR 的预测结果慢慢趋向平滑,该模型仍然没有解决对极端天气预测产生的平滑效应。 Station 评估 通过分析场的数据、18,000 个不同气象站的实时观测数据,我们使用 2022 年 7-12 月的数据对模型进行检验,以 IFS_HRES、盘古大模型作对比,FengWu-GHR 在提前任何天数得到的预测结果都占据优势地位。 热...