Since the purpose of these experiments are to illustrate the effectiveness of the federated learning paradigm, only simple models such as MLP and CNN are used. Requirments Install all the packages from requirments.txt Python3 Pytorch Torchvision Data Download train and test datasets manually or they...
GitHub is where people build software. More than 100 million people use GitHub to discover, fork, and contribute to over 420 million projects.
python -m pt_server -r 40 接下来打开一个新的终端,用“alice”训练分组启动你的第一个客户端: python -m pt_client -s alice 启动“bob”训练分组的第二个客户端。 python -m pt_client -s bob 如果一切正常,在运行服务器进程的终端中看到训练...
其实在我看来Federated Learning的精髓和Distributed Machine Learning (DML)差不多. 但是最主要的区别就在于FL里, 用户保有自己的数据. 理论上, 数据可以完全存在本地, 不需要将数据存放到服务器或者云端. 类似的, 另外一个隐私保护的技术是Differential Privacy (DP) 也是需要在原始数据上做处理后再放到模型中去训...
基于pytorch的DeepLearning学习笔记 最近开始学深度学习框架pytorch,从最简单的卷积神经网络开始了解pytorch的框架。以下涉及到的代码完整版请查看https://github.com/XieHanS/CPSC_ECGHbClassify_demo.git 基于pytorch的DL主要分为三个模块,数据块,模型块,和训练块。具体如下: ...
在两个真实世界数据集上的实验结果表明,FedSeqRec优于最先进的联合推荐方法。FedSeqRec的实现代码位于https://github.com/MuziLee-x/FedSeqRec。 1.Introduction 推荐系统在我们的日常生活中发挥着至关重要的作用,例如在线学习平台上的课程推荐[1–3]、基于位置的服务中的兴趣点推荐[4,5]和电子商务平台上的微视...
This hardware configuration was designed to meet the demands of complex federated learning training and support the implementation of game theory simulations and privacy protection mechanisms. In terms of software, the experiment’s runtime environment was Ubuntu 18.04, with Python 3.8 as the ...
Federated learning is a distributed machine learning approach that enables the training of models without the need to share data. This project is a simple and easy-to-use federated learning framework that can be integrated with popular machine learning f
OpenFL is an open-source, Python 3-based framework for FL that is designed to be an easy-to-use, secure, scalable and extensible tool for data scientists. OpenFL is available on GitHub, along with tutorials and documentation to help organizations get started with their own FL projects. OpenFL...
联邦学习(Federated Learning) 联邦学习简介 联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下,在多参与方或多计算结点之间开展高...