在此背景下,联邦学习(Federated machine learning/Federated Learning)应时而生,为边缘计算的安全问题提供了解决方案。联邦学习是一个机器学习框架,在参与方使用加密后的私有数据进行运算,仅交换加密状态后的模型的参数、权重及梯度等特征,无需将原始数据移出本地,也无需将加密后的原始数据移动集中,即能帮助多个机构在满...
Keywords Federated learning; mobile edge networks; resource allocation; communication cost; data privacy; data security Abstract 由于其允许ML模型的协作训练和允许移动网络优化的DL,FL可以作为移动边缘网络中的使能技术进行服务。然而,在大规模和异构的移动边缘网络中,有着各种局限的异构设备参与其中,这带来了FL实现...
https://www.deeplearning.ai/short-courses/intro-to-federated-learning 加入联邦学习课程!在这个两部分的课程系列中,您将使用 Flower——一个流行的开源框架——来构建联邦学习系统,并在第二部分中学习使用私有数据对大型语言模型(LLM)进行联邦微调。 联邦学习允许模型在多个设备或组织之间进行训练,而无需共享数据,...
联邦学习:技术角度的讲解(中文)Introduction to Federated Learning 一刻talks |吴嫣雯:联邦学习如何帮助数据更安全 杨强| 用户隐私,数据孤岛和联邦学习 杨强 联邦学习的最新进展 Advance in Federated Learning 刘洋丨联邦学习的技术挑战和应用展望 FedML MLOps FedML联邦机器学习框架视频教学全集-第1期-Overview of FedML...
Federated Learning 里面一个的一个 Open Problem 是,如果每个 local device 上面的数据,是非常 biased...
Federated learning (FL) is an approach to machine learning (ML) in which the training data is not managed centrally. In the era of data-driven decision-making, the financial industry faces a unique conundrum: how to leverage the power of ML without compromising the privacy and security of ...
推荐一家ML领域的创业公司FedML | 产品线也全新升级为四大相互协同的AI平台:community-driven AI、train on the edge、train on the cloud以及serve anywhere,至此,FedML公司包含了从训练、推理、监控到持续改进的全流程机器学习平台,区别于其他公司,我们依然主打协作式AI。
The New Dawn of AI: Federated Learning AI Weekly: Google’s federated learning gets its day in the sun Federated Learning and Privacy Google engineers work towards large scale federated learning A Beginners Guide to Federated Learning Federated Learning: The Future of Distributed Machine Learning How...
ICML联邦学习论文解读 SCAFFOLD: Stochastic Controlled Averaging for Federated Learning,程序员大本营,技术文章内容聚合第一站。
Federated learning is a ML technique that trains an algorithm across multiple decentralized edge devices or servers holding local data samples.