我们在生物数据统计分析中,经常会听到p-value,adjusted p-value,q-value以及False discovery rate(FDR)。比如最常见实验组和对照组的差异基因表达分析,除了获得一个p值(p-value),通常而言还会得到一个adjusted p-value或者FDR(false discovery rate)。那么他们之间到底有什么关系,为什么已经有了一个p-value来指征显...
Benjamini and Hochberg FDR (BH) 这是我们最常用的校正P-value控制假阳性率的方式。假设针对10000个基因进行了统计检验,对所有的原始P-value进行由小到大的排序分别为p1, p2, ..., p10000,校正后的FDR为:p1*10000/1, p2*10000/2, ..., p10000*10000/10000。与Bonferroni correction一致的地方是都乘以了...
总之,理解并正确使用这些指标,如p-value、adjusted p-value(q-value)和FDR,对于防止因多重检验导致的误导性结果至关重要。在进行大规模数据分析时,需要综合考虑这些指标,以确保科研结论的准确性和可靠性。
将所有p.value直接用p.adjust中的‘BH’方法进行校正,head展示前六个结果,可以看出得到的结果与topTable一致; 仅将第一个p.value用p.adjust中的‘BH’方法进行校正,得到的结果其实与p.value一致; 综上: 在多重检验的时候,需要对p值进行校正; FDR(Benjamini and Hochberg(BH))是p值的校正方法之一;(所以,统计...
⼀⽂了解P-value,多重⽐较,FDR和Qvalue的差别 ⾸先交代⼀下⽤来说明这⼏个统计量的例⼦。这⾥会使⽤基因表达作为⼀个例⼦。假设我们有两组细胞:对照组和处理组。我们正在研究基因 A 在处理的条件下是否受到表达或没有表达。每组我们有 12 个重复。我们通常做的是取每组 12 个重复的平均...
将所有p.value直接用p.adjust中的‘BH’方法进行校正,head展示前六个结果,可以看出得到的结果与topTable一致; 仅将第一个p.value用p.adjust中的‘BH’方法进行校正,得到的结果其实与p.value一致; 综上: 在多重检验的时候,需要对p值进行校正; FDR(Benjamini and Hochberg(BH))是p值的校正方法之一;(所以,统计...
多重检验中的FDR错误控制方法和p-value的校正及Bonferroni校正.doc,多重检验中的FDR错误控制方法与p-value的校正及Bonferroni校正 数据分析中常碰见多重检验问题 (multiple testing).Benjamini于1995年提出一种方法,通过控制FDR(False Discovery Rate)来决定P值的域值. 假设
BH法有时也称fdr法,是我们最常用的多重假设检验校正方法,可以很好的控制假阳性率和维持统计检出力。R函数p.adjust可用来计算一组p-value校正后的fdr值。(DESeq2中返回的padj也是用BH方法控制的FDR) q-value是什么? q-value是Storey和Tibshirani提出的基于p-value分布的FDR计量方法,具体见什么,你算出的P-value看...
每组我们有 12 个重复。我们通常做的是取每组 12 个重复的平均值,并进行 t 检验以比较差异是否显着(假设正态分布)。然后我们得到一个 p 值,比如 p = 0.035。如果它小于 0.05(所设置的阈值),我们得出结论,在处理后基因 A 的表达发生了显着变化。好,问题来了,p value为0.035告诉了我们怎样的信息?
每组我们有 12 个重复。我们通常做的是取每组 12 个重复的平均值,并进行 t 检验以比较差异是否显着(假设正态分布)。然后我们得到一个 p 值,比如 p = 0.035。如果它小于 0.05(所设置的阈值),我们得出结论,在处理后基因 A 的表达发生了显着变化。好,问题来了,p value为0.035告诉了我们怎样的信息?