跳级结构:通过跳级结构将最后一层的预测(富有全局信息)和更浅层(富有局部信息)的预测结合起来,在遵守全局预测的同时进行局部预测。将底层(stride 32)的预测(FCN-32s)进行2倍的上采样得到原尺寸的图像,并与从pool4层(stride 16)进行的预测融合起来(相加),这一部分的网络被称为FCN-16s。随后将这一部分的预测再进...
FCN结构示意图 对于FCN-32s,直接对pool5 feature进行32倍上采样获得32x upsampled feature,再对32x upsampled feature每个点做softmax prediction获得32x upsampled feature prediction(即分割图)。 对于FCN-16s,首先对pool5 feature进行2倍上采样获得2x upsampled ...
医学图像分割算法融合了众多方法论,从传统的基于阈值、区域生长、分裂合并、边缘检测等原理出发,逐步发展至包含区域相似性分析的水平集、区域竞争等高级算法,再到当今前沿的机器学习和深度学习技术,诸如 U-Net、全卷积网络 (FCN)、Mask R-CNN、DeepLab 等深度学习模型的广泛应用,极大地提升了分割的精度与效率。这个...