test_loader = DataLoader(test_dataset, shuffle = False, batch_size = batch_size) # 定义网络模型 class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() # 第一层卷积层采用Conv2d模块:输入1维,输出10维,卷积核尺寸5x5(此处输入输出的维度表示的是通道数),不扩充(padd...
在我们的卷积神经网络前向传播的过程当中,最后是一个N*N*21的输出,这个21是可以我们进行人为通过1*1卷积定义出来的,这样我们才能够得到一个21个类别,每个类别出现的概率,最后输出和原图图像大小一致的那个特征图,每个像素点上都有21个channel,表示这个像素点所具有的某个类别输出的概率值。吴恩达教授在讲解卷积神经...
全卷积网络(FCN)与图像分割 从图像分类到图像分割 卷积神经网络(CNN)自2012年以来,在图像分类和图像检测等方面取得了巨大的成就和广泛的应用。CNN的强大之处在于它的多层结构能自动学习特征,并且可以学习到多个层次的特征:较浅的卷积层感知域较小,学习到一些局部区域的特征;较深的卷积层具有较大的感知域,能够学习到...
在我们的卷积神经网络前向传播的过程当中,最后是一个N*N*21的输出,这个21是可以我们进行人为通过1*1卷积定义出来的,这样我们才能够得到一个21个类别,每个类别出现的概率,最后输出和原图图像大小一致的那个特征图,每个像素点上都有21个channel,表示这个像素点所具有的某个类别输出的概率值。吴恩达教授在讲解卷积神经...