FCM(Fuzzy c-means)算法的基本过程: 假设需要将数据集中的数据分为C种类型,那么就存在C个聚类中心,每个数据样本i属于某一类型的隶属度(概率)为$\mu_ij$,因此目标函数可以写成$J = \sum^C_{i=1}\sum^n_{j=1}\mu^m_{ij}(x_j-C_i)^2$(当样本靠近其隶属的类型中心点时,其距离小,概率大,反之距...
FCM(Fuzzy c-means)算法的基本过程: 假设需要将数据集中的数据分为C种类型,那么就存在C个聚类中心,每个数据样本i属于某一类型的隶属度(概率)为$\mu_ij$,因此目标函数可以写成$J = \sum^C_{i=1}\sum^n_{j=1}\mu^m_{ij}(x_j-C_i)^2$(当样本靠近其隶属的类型中心点时,其距离小,概率大,反之距...
FCM(Fuzzy c-means)算法的基本过程: 假设需要将数据集中的数据分为C种类型,那么就存在C个聚类中心,每个数据样本i属于某一类型的隶属度(概率)为$\mu_ij$,因此目标函数可以写成$J = \sum^C_{i=1}\sum^n_{j=1}\mu^m_{ij}(x_j-C_i)^2$(当样本靠近其隶属的类型中心点时,其距离小,概率大,反之距...