为了在不同的计算预算下为广泛的应用提供服务,我们提供了FasterNet的小型、小型、中型和大型变体,分别称为FasterNetT0/1/2、FasterNet-S、FasterNet-M和FasterNet-L。它们共享相似的架构,但在深度和宽度上有所不同。 4实验 Latency on GPU:模型推理和后处理的时间,时间越小,执行速度越快 消融实验: 1、对于部分...
在Ponv的基础上,我们进一步提出了FasterNet,这是一个新的神经网络家族,它在各种设备上获得了比其他网络更高的运行速度,而不影响各种视觉任务的准确性。 例如,在ImageNet1K上,我们的微型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileVit-XXS快3.1×、3.1×和2.5×,同时精度提高2.9%。 我们的大型FasterNet-L实...
为了在不同的计算预算下提供广泛的应用,提供FasterNet的Tiny模型、Small模型、Medium模型和Big模型变体,分别称为FasterNetT0/1/2、FasterNet-S、FasterNet-M和FasterNet-L。它们具有相似的结构,但深度和宽度不同。 架构规范如下: 2.5、代码实现 3、实验 3.1、PConv的快速性与高Flops 3.2、PConv与PWConv一起有效 3....
在我们的PConv上,我们进一步提出了FasterNet,一个新的神经网络家族,它在广泛的设备上实现了比其他网络更高的运行速度,同时在各种视觉任务上的精度不打折扣。例如,在ImageNet-1k上,我们的小型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileViT-XXS快3.1倍、3.1倍和2.5倍,同时精度提高了2.9%。我们的大型FasterNet...
为了在不同的计算预算下提供广泛的应用,提供FasterNet的Tiny模型、Small模型、Medium模型和Big模型变体,分别称为FasterNetT0/1/2、FasterNet-S、FasterNet-M和FasterNet-L。它们具有相似的结构,但深度和宽度不同。 架构规范如下: 2.5、代码实现 3、实验
例如,在ImageNet-1k上小型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileVitXXS快3.1倍、3.1倍和2.5倍,同时准确度提高2.9%。 大模型FasterNet-L实现了令人印象深刻的83.5%的TOP-1精度,与Swin-B不相上下,同时GPU上的推理吞吐量提高了49%,CPU上的计算时间也节省了42%。
例如,在ImageNet1K上,我们的微型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileVit-XXS快3.1×、3.1×和2.5×,同时精度提高2.9%。 我们的大型FasterNet-L实现了令人印象深刻的83.5%的Top-1准确率,与新兴的Swin-B不相上下,同时在GPU上提高了49%的推断吞吐量,并在CPU上节省了42%的计算时间。 1. FasterNet...
例如,在ImageNet-1k上,我们的小型FasterNet-T0在GPU、CPU和ARM处理器上分别比MobileViT-XXS快3.1倍、3.1倍和2.5倍,同时精度提高了2.9%。我们的大型FasterNet-L取得了令人印象深刻的83.5%的top-1精度,与新兴的Swin-B不相上下,同时在GPU上的推理吞吐量提高了49%,以及在CPU上节省了42%的计算时间。
为了在不同的计算预算下服务于广泛的应用程序,作者提供了 FasterNetT0/1/2,FasterNet-S,FasterNet-M,和 FasterNet-L。 1.6 PConv 具有更高的 FLOPS 作者在3种不同设备上测量 Latency (Batch Size=1) 和 Throughput (Batch Size=32),GPU (2080Ti), CPU (Intel i9-9900X, using a single thread), 和...
为了在不同的计算预算下提供广泛的应用,提供FasterNet的Tiny模型、Small模型、Medium模型和Big模型变体,分别称为FasterNetT0/1/2、FasterNet-S、FasterNet-M和FasterNet-L。它们具有相似的结构,但深度和宽度不同。 架构规范如下: 2.5、代码实现