fast_rcnn即fast_rcnn方法,它下面只包含了train.prototxt,test.prototxt,solver.prototxt三个文件,它对rcnn的改进主要在于重用了卷积特征,没有region proposal框架。 faster_rcnn_alt_opt,faster_rcnn_end_to_end都是faster rcnn框架,包括了region proposal模块
上述改进措施使得Faster R-CNN在速度和准确性上都优于Fast R-CNN,它不仅具有更高的检测精度,而且在处理多尺度和小目标问题时也更加有效。 同Fast RCNN实现一样(见https://www.cnblogs.com/Haitangr/p/17709548.html),本文将基于Pytorch框架,实现Faster RCNN算法,完成对17flowes数据集的花朵目标检测任务。 二、F...
目标检测算法-Faster-RCNN代码详解 Faster-RCNN是基于VGG-16的网络结构,Faster-RCNN的提出为了改进Fast-RCNN中存在的问题。Fasr-RCNN中存在了一个较大的问题,就是selective search候选框,Fastr-RCNN中引入了一个专门的生成候选框的区域的神经网络,也就是选择候选框的工作也交给神经网络来做了,这就引入了RPN网络...
Faster R-CNN (Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks) 是目标检测领域最为经典的方法之一,通过 RPN(Region Proposal Networks) 区域提取网络和 R-CNN 网络联合训练实现高效目标检测。其简要发展历程为: R-CNN。首先通过传统的 selective search 算法在图片上预取 2000 个...
以官方 PyTorch torchvision 里的 Faster RCNN 代码为例:输入图片尺度为 768x1344,5 个 feature map 分别经过了 stride=(4, 8, 16, 32, 64),得到了 5 个大小为 (192x336, 96x168, 48x84, 24x42, 12x21) 的 feature。 代码中预定义了 5 个尺度(32, 64, 128, 256, 512) ,3 种 aspect_ratio...
接下来就是理解代码了,faster-rcnn的核心思想就是通过RPN替代过往的独立的步骤进行region proposal,实现完全的end-to-end学习,从而对算法进行了提速。所以读懂RPN是理解faster-rcnn的第一步。下面的代码是如何得到用于训练RPN的ground truth的,完全理解之后也就理解RPN的原理了。
在R-CNN和Fast R-CNN的基础上,Ross B. Girshick于2016年提出了Faster R-CNN。Faster R-CNN在结构上进行了改进,将特征抽取、候选区域提取、边界框回归和目标分类等步骤整合到一个网络中,从而显著提升了综合性能,尤其在检测速度方面取得了明显的改进。Faster R-CNN引入了一个称为RPN(Region Proposal Network,区域提...
experiments/cfgs/faster_rcnn_alt_opt.yml 从这条命令就可以看出,我们是使用0id的GPU,使用ZF网络,预训练模型使用ZF.v2.caffemodel,数据集使用voc_2007_trainval,配置文件cfg使用faster_rcnn_alt_opt.yml。 先进入主函数: if __name__ == '__main__': ...
https://pytorch.org/docs/stable/torchvision/models.html#faster-r-cnn 在python 中装好 torchvision 后,输入以下命令即可查看版本和代码位置: importtorchvision print(torchvision.__version__) # '0.6.0' print(torchvision.__path__) # ['/usr/local/...