经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。 图1 Faster RCNN基本结构(来自原论文...
① 第一个模块是一个深度全卷积网络,用于region proposal; ② 第二个模块是Fast R-CNN检测器,其输入便是模块一提供的region proposals; (二)Region Proposal Network 区域提议网络 RPN网络的输入是一张任意尺寸的图片,输出是一组带有矩形框的object proposals,每一个proposal都有对应的objectness socre(目标得分)。
整个faster-RCNN的大致框架依然是沿袭了fast-RCNN的基本能结构,只不过在region proposal的产生上面应用了专门的技术手段——区域推荐网络(region proposal network,即RPN),这是整个faster最难以理解的地方,本文也将以他为重点进行说明。
Faster R-CNN是继R-CNN,Fast R-CNN后基于Region-CNN的又一目标检测力作。Faster R-CNN发表于NIPS 2015。即便是2015年的算法,在现在也仍然有着广泛的应用以及不俗的精度。缺点是速度较慢,无法进行实时的目标检测。 Faster R-CNN是典型的two-stage目标检测框架,即先生成区域提议(Region Proposal),然后在产生的Regi...
(1)提出了 RPN(Region Proposal Network),RPN 和检测网络共享卷积特征图,本质上是一个全卷积神经网络,用于生成 region proposals(proposals 后续用于 Fast R-CNN 的 detection),可以实现端到端的训练,突破了区域建议算法的计算瓶颈。 (2)传统解决目标多尺度问题的方法有图像/特征图金字塔、滤波器金字塔,而本文提出了...
在Faster R-CNN 原文中,平移量 与尺度因子 如下: 接下来的问题就是如何通过线性回归获得dx(A),dy(A),dw(A),dh(A)了。线性回归就是给定输入的特征向量X, 学习一组参数W, 使得经过线性回归后的值跟真实值Y(即GT)非常接近,即Y=WX。对于该问题,输入X是一张经过num_output=1的1x1卷积获得的feature map,...
Region Proposal Networks是Faster RCNN出新提出来的proposal生成网络。其替代了之前RCNN和Fast RCNN中的selective search方法,将所有内容整合在一个网络中,大大提高了检测速度(语文水平差,所以历史科普请看其他文章T_T)。 缩进在正文前,还要多解释几句基础知识,已经懂的看官老爷跳过就好。
其中,Faster R-CNN凭借其高效的检测速度和准确性,成为了目标检测领域的新里程碑。 Faster R-CNN是在Fast R-CNN的基础上引入Region Proposal Network (RPN)而得到的。RPN是一个全卷积网络,能够同时预测物体外接框的位置和每个位置是否为物体的得分,从而大大减少了候选框计算的时间开销。通过共享卷积特征,Faster R-...
Faster R-CNN的基本结构: 由以下4个部分构成: 1、特征提取部分:vgg网络 2、RPN部分:这部分是Faster R-CNN全新提出的结构,作用是通过网络训练的方式从feature map中获取目标的大致位置; 3、Proposal Layer部分:利用RPN获得的大致位置,继续训练,获得更精确的位置; ...
简介:该部分为fasterrcnn的新颖之处,目标检测的第一步 子模块:(1)生成Anchors (2)RPN卷积网络 (3)计算RPN loss (4)生成proposal (5)筛选proposal,得到RoI (1)生成Anchors 在原图上生成一些固定 的先验框,为适应不同物体的大小与宽高, 在作者的论文中, 默认在每一个点上抽取了9种Anchors, 具体Scale为{8...