一文读懂Faster RCNN:https://zhuanlan.zhihu.com/p/31426458Faster R-CNN基本结构如下图所示 可以分为以下四部分: CNN layer 。卷积层,该层主要作用是提取出图像的特征,一般选用VGG16或resnet。 Region Proposal Network。 RPN网络主要用于生成候选区域(region proposal)。简单来说就是判断anchors是foreground或者back...
基于FPN 的结构可知:FPN 作为骨干网络的附加模块,会生成多尺度的特征图(图中 Feature Maps),而后需要将多尺度的特征图传入 RPN 网络生成 proposals,并使用 proposals 在多尺度特征图上进行 ROI Pooling,因此在 Faster RCNN 中添加 FPN 结构将与骨干网络、RPN 网络以及 ROI Pooling 有关,添加 FPN 的骨干网络在上...
也就是说,可以将Faster R-CNN 看作是 RPN + Fast R-CNN。 Faster R-CNN的网络示意如下图。 学习Faster R-CNN目标检测框架,对于目标检测任务的熟悉和进一步研究有着非常大的帮助,接下来将主要通过Faster R-CNN的训练和推理过程,学习它的网络结构等内容。 Faster R-CNN 网络结构 Dataset 在提及Faster R-CNN框...
加入FPN之后,网络总体结构变得复杂,训练方法也要随之变化,不可能像单独训练端到端的CNN那么简单,这也是Faster R-CNN原论文中比较难度的部分(如果能够精读Faster R-CNN源代码,这部分理解起来就很轻松),这部分的理解自己也主要参考了[1](感谢优秀的朋友的无私分享) Faster R-CNN的训练,是在已经训练好的model的基础...
1.1.3 Faster R-CNN-ResNet 在Faster RCNN基础上,将backbone替换为ResNet50或ResNet101,涉及部分细节的改动,我们放在本文的细节部分进行描述。 1.1.4 FPN 在Faster RCNN-ResNet基础上,引入FPN(特征金字塔网络)模块,利用CNN网络天然的特征金字塔特点,模拟图像金字塔功能,使得RPN和Fast RCNN可以在多个尺度级别(scale...
三、faster-rcnn + FPN网络,提升小目标检测 一些理解 一、整体框架 如上图所示,整体主要分为4个阶段: 1.1、Conv layers提取特征图: 作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取input image的feature maps,该feature maps会用于后续的RPN层和全连接层,具体为VGG的网络层,...
一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN等),它们是two-stage的,需要先通过算法产生目标候选框,也就是目标位置,然后再对候选框做分类与回归。 而另一类是Yolo,SSD这类one-stage算法,其仅仅使用一个卷积神经网络CNN直接预测不同目标的类别与位置。
下面是根据detectron2中带FPN结构的Faster R-CNN来解释的,那么FPN规定的层中都会跟一个RPN,具体结构如下图所示。 frcnn结构 1. RPN层的ground truth中正负样本怎么定义的? 生成的所有的anchor框与标注框计算iou,如果iou小于0.3则将anchor定义为负样本,如果大于0.7则定义为正样本,在[0.3, 0.7]之间的不参与rpn层...
Faster R-CNN是目标检测中较早提出来的两阶段网络,其网络架构如下图所示: 可以看出可以大体分为四个部分: Conv Layers卷积神经网络用于提取特征,得到feature map。 RPN网络,用于提取Region of Interests(RoI)。 RoI pooling, 用于综合RoI和feature map, 得到固定大小的resize后的feature。
Fast R-CNN 的一个主要特点是整个网络(特征提取器,分类器和边界框回归器)可以通过多任务损失 multi-task losses(分类损失和定位损失)进行端到端的训练。这样的设计提高了准确性。 ROI Pooling 由于Fast R-CNN 使用了全连接层,因此我们应用 ROI Pooling 将不同大小的 ROIs 转换为预定义大小形状。