一、 Faster R-CNN概况 经历了R-CNN和Fast R-CNN的前期积累,Ross Girshick与何恺明、任少卿和孙剑合作对Fast R-CNN进行改进,改进版本就是Faster R-CNN。之所以称之为Faster,就是因为相比于Fast R-CNN,Faster R-CNN将推荐区域生成、分类和定位全部融入到一个网络当中,极大加快了Faster R-CNN的训练与测试,综合性...
目标检测一直是计算机视觉中比较热门的研究领域,有一些常用且成熟的算法得到业内公认水平,比如RCNN系列算法、SSD以及YOLO等。如果你是从事这一行业的话,你会使用哪种算法进行目标检测任务呢?在我寻求在最短的时间内构建最精确的模型时,我尝试了其中的R-CNN系列算法,如果读者们对这方面的算法还不太了解的话,建议阅读...
(1).下载训练好的模型,下载后这个faster_rcnn_models文件夹在$FRCN_ROOT/data下面,可以从data/README.md中查看关于这个的详细介绍。这些模型是在VOC 2007 上训练的。(可在data/scripts/fetch_faster_rcnn_models.sh文件中复制URL用迅雷下载) (2)运行demo cd $FRCN_ROOT ./tools/demo.py 2.训练PASCAL VOC ...
上次使用 Faster R-CNN 训练了一个 VGG-16 的网络,为了再提升识别的准确率,利用 ResNet 网络在同样的数据上面训练了多一次。 基本的过程和在训练 VGG-16 网络时差不多,可参照 使用自己的数据训练 Faster R-CNN 的 VGG-16 模型 一、训练网络 (一)下载 ResNet-50 的 prototxt 文件 在我的 Github 上面可以...
在fast-RCNN之前的RCNN和SPPNet都不是端到端的训练,因为最后的类别分类和边框回归是分开进行的,而fast-RCNN做出了一系列的改进。 fast-RCNN的一般模型为: 将后面的全连接层放大之后为: cls_score层用于分类,输出K+1维数组p,表示属于K类和背景的概率。
目标检测算法——手撕Faster R-CNN Faster R-CNN网络结构 Faster R-CNN有四个子模块组成 主干网络 主干网络可以是预训练好的ResNet50,VGG16等网络,将图片压缩为固定尺寸的Feature Map。已经预训练完毕。 ResgionProposalNetwork 根据Feature Map生成与原图尺寸对应的建议框。需要训练。
Faster R-CNN可以简单地看成是“区域生成网络+Fast R-CNN”的模型,用区域生成网络(Region Proposal Network,简称RPN)来代替Fast R-CNN中的Selective Search(选择性搜索)方法。 如下图 RPN如下图: RPN的工作步骤如下: -在feature map(特征图)上滑动窗口 ...
在RPN阶段分类是二分类,而Fast RCNN阶段是21分类 4.4 模型架构图 最后整体的模型架构图如下: 需要注意的是:蓝色箭头的线代表着计算图,梯度反向传播会经过。而红色部分的线不需要进行反向传播(论文了中提到了ProposalCreator生成RoIs的过程也能进行反向传播,但需要专门的算法)。
传统的目标检测中,多尺度形变部件模型DPM(Deformable Part Model)是出类拔萃的,感兴趣的同学可以去了解以下DPM的相关知识(本质是HOG+SVM的扩展)。 二、基于深度学习的RCNN目标检测算法的出现 正当传统的目标检测方法遇到瓶颈时,基于深度学习的目标检测发展了起来,但真正起到变革作用的是RCNN算法的出现。R-CNN是Region...
Netscope的优点是显示的网络模型简洁,而且将鼠标放在右侧可视化的网络模型的任意模块上,会显示该模块的具体参数。图1以Faster R-CNN中ZF模型的train.prototxt文件为例 可视化图像特征 关于图像的可视化,我也使用过两种两种方式: 修改demo.py代码输出中间层结果