Faster R-CNN算法是作者Ross Girshick对Fast R-CNN算法的一种改进。Fast R-CNN在速度和精度上都有了不错的结果,但仍有一些不足之处。Faster R-CNN算法同样使用VGG-16网络结构,检测速度在GPU上达到5fps(包括候选区域的生成),准确率也有进一步的提升。在ILSVRC和COCO 2015竞赛中获得多个项目的第一名。在...
经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。 图1 Faster RCNN基本结构(来自原论文...
classFasterRCNNTrainer(nn.Module):def__init__(self,faster_rcnn):super(FasterRCNNTrainer,self).__init__()self.faster_rcnn=faster_rcnn# 下面两个参数是在 _faster_rcnn_loc_loss 调用用来计算位置损失函数用到的超参数self.rpn_sigma=opt.rpn_sigmaself.roi_sigma=opt.roi_sigma# target creator c...
先说R-CNN的缺点:即使使用了Selective Search等预处理步骤来提取潜在的边界框bounding box作为输入,但是R-CNN仍会有严重的速度瓶颈,原因也很明显,就是计算机对所有region进行特征提取时会有重复计算,Fast-RCNN正是为了解决这个问题诞生的。 与R-CNN框架图对比,可以发现主要有两处不同:一是最后一个卷积层后加了一...
图2展示了python版本中的VGG16模型中的faster_rcnn_test.pt的网络结构,可以清晰的看到该网络对于一副任意大小PxQ的图像,首先缩放至固定大小MxN,然后将MxN图像送入网络;而Conv layers中包含了13个conv层+13个relu层+4个pooling层;RPN网络首先经过3x3卷积,再分别生成foreground anchors与bounding box regression偏移量,...
在RCNN,Fast RCNN之后,Ross B. Girshick在2016年提出Faster RCNN,将特征提取(feature extraction),proposal提取,目标定位location,目标分类classification整合到了一个网络中,性能大幅提升。作为Two-stage的代表,相比于yolo,ssd等one-stage检测方法,Faster RCNN的检测精度更高,速度相对较慢。
Faster R-CNN Faster R-CNN主要贡献是提出RPN网络,用于替代Selective Search或其他的图像处理分割算法,实现端到端的训练(end-to-end)。 1.卷积层后插入RPN RPN经过训练后直接产生Region Proposal,无需单独产生Region Proposal。 2. RPN后接ROI Pooling和分类层、回归层,同Fast R-CNN。
首先必须要搞懂一点Faster-Rcnn不是一个神经网络。准确的说他是由两个神经网络构成的一个特征检测网络。 (1)对于CNN网络主要是用来提供输入图像的特征图,通常是经典的卷积神经网络,ALEXNET,VGGNET,RESNET等经典的卷积网络。本文则以Vgg16作为特征提取网络。
Faster R-CNN 结构 首先,输入图片表示为 Height×Width×Depth 的张量(多维数组)形式,经过预训练 CNN 模型的处理,得到卷积特征图(conv feature map). 即,将 CNN 作为特征提取器,送入下一个部分.这种技术在迁移学习(Transfer Learning)中比较普遍,尤其是,采用在大规模数据集训练的网络权重,来对小规模数据集...