Faster R-CNN +++:即R-FCN + Resnet-101;速度快了2.5倍。 主要思路: R-FCN主要通过移除最后的全连接层进行加速,使得结构中所有可学习参数都是卷积,且可共享,并且用到了最新的residual network。 如上图,RPN用于生成候选窗口,ROI池化层用于计算目标窗口得分,通过设定阈值,最终可以将ROIs(region of interest)分成...
原版Faster RCNN的backbone为VGG16, 而实际工作中,我主要使用Resnet50为backbone的Faster RCNN,这里以Resnet50_Faster_RCNN为例进行说明 1. Resnet50_Faster_RCNN 网络结构 下面两张图中,第一张是Resnet50_Faster_RCNN的网络结构流程图,第二张是详细展开后的网络卷积模块。可以发现其网络结构中主要包括Resnet5...
复杂的多分支设计(如ResNet中的残差相加和Inception中的分支连接)使得模型难以实现和定制,降低了推理和内存利用率。 一些组件(如Xception和MobileNets中的深度可分离卷积和ShuffleNets中的channel shuffle)增加了内存访问成本,并且在各种设备上缺乏支持,除了这些因素以外还有许多因素影响了推理速度。 文中提到FLOPs并不能精确...
Faster RCNN的主干网络用于提取特征,常用的有VGG,Resnet,Xception等等 Faster-Rcnn对输入进来的图片尺寸没有固定,但是一般会把输入进来的图片短边固定成600,如输入一张1200x1800的图片,会把图片不失真的resize到600x900上。 1.Faster RCNN的backbone和classifier——ResNet50 ResNet50的Bottleneck分为两类,分别名为...
Faster RCNN 是继R-CNN和Fast RCNN之后提出的新的目标检测网络,在检测精度和速度上有明显提高,在我写这篇文章的时候,Faster RCNN原论文以引用:24592。 目录: 流程图 整个网络分为5大部分: Dataset :预测里数据集,把每个batch转换成大小相同的图片等。
首先介绍Fast-RCNN核心算法模块,即RoI Pooling。基于图像分类任务的卷积神经网络首先将图片重新缩放并才裁剪到固定大小,如AlexNet和ResNet将图片缩放到256尺度并裁剪至224×224大小,然后将裁剪后的图像输入至网络训练。但对于检测任务,图像大小对检测性能有重要的影响。假设输入224×224大小的图像,则很有可能目标对象会因...
Faster R-CNN有四个子模块组成 主干网络 主干网络可以是预训练好的ResNet50,VGG16等网络,将图片压缩为固定尺寸的Feature Map。已经预训练完毕。 ResgionProposalNetwork 根据Feature Map生成与原图尺寸对应的建议框。需要训练。 ROIPooling 给定Feature Map和一系列建议框,将Feature Map中对应的每个建议框内容截取为相同...
PCB瑕疵检测RCNN系列——mAP 0.994解决方案 数据集与框架介绍 印刷电路板(PCB)瑕疵数据集:数据下载链接,是一个公共的合成PCB数据集,由北京大学发布,其中包含1386张图像以及6种缺陷(缺失孔,鼠标咬伤,开路,短路,杂散,伪铜),用于检测,分类和配准任务。我们选取了其中适用与检测任务的693张图像,随机选择593张图像作为训...
Faster RCNN,作为目标检测领域的革新之作,其原理在Pytorch官方源码中有详细阐述。该模型旨在提高检测精度和速度,其主要由五部分构成:数据处理(Dataset):首先,创建自定义数据集,包含图片及其相关信息,如经过放缩的boxes坐标、标签、面积、图片ID和难度等级。然后,使用DataLoader对数据进行批量处理,确保...
结果显示,没有细化步骤的 DiffusionDet 使用 ResNet-50 主干网络实现了 45.5 AP,以较大的优势超越了以往成熟的方法,如 Faster R-CNN、RetinaNet、DETR 和 Sparse R-CNN。并且当主干网络的尺寸扩大时,DiffusionDet 显示出稳定的提升。下表 2 中展示了在更具挑战性的 LVIS 数据集上的结果,可以看到,...