Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 网络结构 Faster R-CNN 使用了注意力(attention)机制,它由两个模块组成。 1. RPN(region proposal network) 作用是推荐图像中的有物体区域。 2. Fast R-CNN检测器 作用是检测是什么物体。 RPN RPN 网络的输入是任意大小的图像,...
经典的检测方法生成检测框都非常耗时,如OpenCV adaboost使用滑动窗口+图像金字塔生成检测框;或如R-CNN使用SS(Selective Search)方法生成检测框。而Faster RCNN则抛弃了传统的滑动窗口和SS方法,直接使用RPN生成检测框,这也是Faster R-CNN的巨大优势,能极大提升检测框的生成速度。 img 图4 RPN网络结构 上图4展示了RPN...
基准网络选择VGG,使用预训练好的参数。实际训练过程的步骤: (1) 用预训练好的VGG初始化网络,单独训练RPN(训练好后,获取proposal boxes并保存) (2) 用预训练好的VGG初始化网络,使用上一步的proposal boxes作为输入,训练FasterRCNN。(此时两个网络参数不共享) (3) 使用(2)中的Faster RCNN网络参数初始化RPN网络。
其实最主要的就是在Fast R-CNN中我们依旧是和R-CNN一样采用SS算法来生成候选框,而在Faster R-CNN中我们采用的是一种称为RPN(Region Proposal Network)的网络结构来生成候选框。其它部分基本和Fast R-CNN一致,所以我们可以将Faster R-CNN的网络看成两部分,一部分是RPN获取候选框网络结构,另一部分是Fast R-CNN...
这周看完faster-rcnn后,应该对其源码进行一个解析,以便后面的使用。 那首先直接先主函数出发py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py 我们在后端的运行命令为 python ./py-faster-rcnn/tools/train_faster_rcnn_alt_opt.py --gpu 0
1、下载Faster R-CNN源码 https://github.com/dBeker/Faster-RCNN-TensorFlow-Python3 2、安装扩展包 下载的源码中有一个 requirements.txt文件,列出了需要安装的扩展包名字。可以在cmd中直接运行以下代码: pip install -r requirements.txt 或者使用pip命令一个一个安装,所需要的扩展包有:cython、opencv-python、...
『计算机视觉』Faster-RCNN学习_其一:目标检测及RCNN谱系 一篇讲的非常明白的文章:一文读懂Faster RCNN (1)输入测试图像; (2)将整张图片输入CNN,进行特征提取; (3)用RPN生成建议窗口(proposals),每张图片保留约300个建议窗口; (4)把建议窗口映射到CNN的最后一层卷积feature map上; ...
Faster R-CNN(RPN + CNN + ROI) R-FCN 等系列方法; 3. 基于深度学习的回归方法:YOLO/SSD/DenseBox 等方法;以及最近出现的结合RNN算法的RRC detection;结合DPM的Deformable CNN等 传统目标检测流程: 1)区域选择(穷举策略:采用滑动窗口,且设置不同的大小,不同的长宽比对图像进行遍历,时间复杂度高) ...
Faster R-CNN是2-stage方法的奠基性工作,提出的RPN网络取代Selective Search算法使得检测任务可以由神经网络端到端地完成。如图 faster-RCNN网络流程 其主要步骤为: 1、输入图像到卷积网络中,生成该图像的特征映射。 2、在特征映射上应用Region Proposal Network,返回object proposals和相应分数。