1、特征提取部分:vgg网络 2、RPN部分:这部分是Faster R-CNN全新提出的结构,作用是通过网络训练的方式从feature map中获取目标的大致位置; 3、Proposal Layer部分:利用RPN获得的大致位置,继续训练,获得更精确的位置; 4、ROI Pooling部分:利用前面获取到的精确位置,从feature map中抠出要用于分类的目标,并pooling成固...
通过共享卷积特征,Faster R-CNN进一步融合了RPN和Fast R-CNN为一个网络,实现了端到端的训练,显著提高了检测速度。 一、卷积神经网络与特征提取 Faster R-CNN首先利用一个预训练的卷积神经网络(如VGGNet或ResNet)对输入图像进行特征提取。这个卷积神经网络通过一系列的卷积层、池化层和激活函数,将原始图像转换为具有...
一Faster R-CNN思路 从R-CNN到Fast R-CNN,再到本文的Faster R-CNN,目标检测的四个基本步骤(候选区域生成,特征提取,分类,位置精修)终于被统一到一个深度网络框架之内。所有计算没有重复,完全在GPU中完成,大大提高了运行速度。 Faster R-CNN可以简单地看做“区域生成网络(RPN)+Fast RCNN“的系统,用区域生成...
经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。 图1 Faster RCNN基本结构(来自原论文...
也就是说RPN提取候选框是在特征图上的,而selective search是在原始图像上的。而且,Fast RCNN的CNN特征提取部分也被提到了最前面,中间插入一个RPN用于候选框提取,之后就直接输入到ROI层了。 Faster R-CNN可以笼统地理解为:RPN + Fast R-CNN。它的结构图大致如下,注意:...
Faster R-CNN是目标检测界的大神Ross Girshick 2015年提出的一个很经典的检测结构,它将传统的Selective Search提取目标的方法替换成网络训练来实现,使得全流程的检测、分类速度大幅提升。 图1是Faster R-CNN的基本结构,由以下4个部分构成: 1、特征提取部分:用一串卷积+pooling从原图中提取出feature map; ...
1.1 RCNN网络: ➢RBG 2014年提出 ➢深度特征 RCNN步骤: ➢步骤一:训练分类网络(AlexNet) ➢步骤二:模型做fine-tuning 类别1000改为20 去掉FC ➢步骤三:特征提取 提取候选框(选择性搜索) 对于每一一个区域: 修正区域为CNN的输入,利用网络对候选框提取到特征 ...
经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。
1.2 Fast-RCNN Fast-RCNN为了解决特征提取重复计算问题而诞生,并且Fast-RCNN巧妙的将目标识别与定位放在同一个CNN中构成Multi-task模型。 Fast-RCNN先用Selective Search找出候选框,’而后整张图过一次CNN,然后用RoI Pooling,将对应候选框的部分做采样,得到相同长度的特征,又经过两层全连接层之后得到最终的特征。接...