先说R-CNN的缺点:即使使用了Selective Search等预处理步骤来提取潜在的边界框bounding box作为输入,但是R-CNN仍会有严重的速度瓶颈,原因也很明显,就是计算机对所有region进行特征提取时会有重复计算,Fast-RCNN正是为了解决这个问题诞生的。 与R-CNN框架图对比,可以发现主要有两处不同:一是最后一个卷积层后加了一...
RCNN network模块:这一模块主要有两个功能,一方面用多层全连接网络对RoI传入的特征进行分类和回归,以得到预测目标的位置和标签;另一方面计算RCNN的损失,用于更新网络的参数。 如图1.1所示绿色框中的部分仅在训练时存在,整个结构的核心部分主要集中在后面三个部分,下面将对其进行详细的梳理。 2.Backbone模块 这一模块主...
回忆RPN网络生成的proposals的方法:对positive anchors进行bounding box regression,那么这样获得的proposals也是大小形状各不相同,即也存在上述问题。所以Faster R-CNN中提出了RoI Pooling解决这个问题。不过RoI Pooling确实是从Spatial Pyramid Pooling发展而来,但是限于篇幅这里略去不讲,有兴趣的读者可以自行查阅相关论文。
Faster-RCNN遵循如下训练过程: 第一步:使用ImageNe上预训练的模型初始化特征提取网络并训练RPN网络; 第二步:使用在ImageNet上预训练的模型初始化Fast-RCNN特征特征提取网络,使用步骤一中训练好的RPN网络产生的候选框作为输入,训练一个Fast-RCNN网络,至此,两个网络每一层的参数完全不共享; 第三步:使用步骤二的Fast...
FAST-RCNN: (1)image input; (2)利用selective search 算法在图像中从上到下提取2000个左右的建议窗口(Region Proposal); (3)将整张图片输入CNN,进行特征提取; (4)把建议窗口映射到CNN的最后一层卷积feature map上; (5)通过RoI pooling层使每个建议窗口生成固定尺寸的feature map; ...
一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN等),它们是two-stage的,需要先通过算法产生目标候选框,也就是目标位置,然后再对候选框做分类与回归。 而另一类是Yolo,SSD这类one-stage算法,其仅仅使用一个卷积神经网络CNN直接预测不同目标的类别与位置。
Fast-RCNN是一种基于深度学习的目标检测算法,可以用于检测图像中的目标物体。交通标志检测是交通场景下的一项重要任务,它可以在道路上的交通标志被遮挡或损坏时提供帮助。基于Fast-RCNN深度学习网络的交通标志检测算法可以对交通场景下的图像进行检测,从而实现对交通标志的自动检测和识别。该算法可以应用于自动驾驶、交通...
在这篇文章中,我们会进一步地了解这些用在目标检测中的算法,首先要从RCNN家族开始,例如RCNN、Fast RCNN和Faster RCNN。 1. 解决目标检测任务的简单方法(利用深度学习) 下图是描述目标检测算法如何工作的典型例子,图中的每个物体(不论是任务还是风筝),都能以一定的精确度被定位出来。 首先我们要说的就是在图像目...
1、RCNN和SPPnet分多步训练,先要fine tuning一个预训练的网络,然后针对每个类别都训练一个SVM分类器,最后还要用regressors对bounding-box进行回归,另外region proposal也要单独用selective search的方式获得,步骤比较繁琐。 2、时间和内存消耗比较大。在训练SVM和回归的时候需要用网络训练的特征作为输入,特征保存在磁盘上...
Fast-RCNN是在SPPNet和RCNN的基础上进行改进的。SPPNet的主要贡献是在整张图像上计算全局特征图,然后对于特定的proposal,只需要在全局特征图上取出对应坐标的特征图就可以了。但SPPNet仍然需要将特征保存在磁盘中,速度还是很慢。结合RCNN的思想,论文提出直接将候选框区域应用于特征图,并使用ROI Pooling将其转化为固...