SPPnet在ConvNet之后接上了SPP layer(空间金字塔池化层),用来把不同尺寸的候选区域特征图转换为特定大小的输出;而Fast RCNN在ConvNet之后接上了ROI pooling layer(ROI池化层),用于把不同尺寸的候选区域特征图转换成特定尺寸的特征图 SPPnet在提取到图像的CNN特征后,又额外训练SVM进行分类和回归;而Fast RCNN就是直...
论文提出一种新的算法结构Fast R-CNN,首先,将图片输入DeepCNN网络中得到特征图,根据映射关系可以找到原图上每个候选区域在特征图上的特征矩阵,然后将特征矩阵通过RoI Pooling层统一缩放到指定尺寸(论文中采用7x7),然后经过两个全连接层得到特征向量,在这之后并联两个全连接层层,左边的全连接层用于目标类别预测(分类器...
这种担忧在实际问题中并没有出现,我们使用了比R-CNN更少的迭代步数,采用N=2,R=128这种策略反而取得了很好的结果。 除了分层抽样之外,Fast R-CNN使用一个阶段的微调同时优化softmax分类器和边界框回归器来简化的训练过程,而不是三个单独的极端训练softmax分类器、SVM、回归器(像R-CNN和SPPNet中那样)。该程序(p...
RCNN中ROI-centric的运算开销大,所以FRCN用了image-centric的训练方式来通过卷积的share特性来降低运算开销;RCNN提取特征给SVM训练时候需要中间要大量的磁盘空间存放特征,FRCN去掉了SVM这一步,所有的特征都暂存在显存中,就不需要额外的磁盘空间了。 由此看一看出RCNN的问题所在,首先在提取完proposal之后,整个网络对提取...
原作者之一rgb在Fast RCNN的论文中就提出了 RCNN 几个很明显的短板。首先,训练是分阶段进行的。为了训练 RCNN,我们需要对 CNN 进行训练,然后,在用它提取的特征对 SVM 进行训练,完了还要训练一个线性回归模型,实在烦琐至极。其次,训练过程很耗费时间和磁盘空间。因为 CNN 是在 Selective Search 挑选出来的候选区...
此外,论文还实验证明了multi-task loss联合训练分类和回归的损失是否比分开计算效果不好,softmax分类效果是否比SVM效果好,感兴趣可以在论文里看下。 【结论】 本文提出的Fast R-CNN模型,相对于之前的R-CNN 和 SPPnet来说,最大的不同是单阶段训练,训练更快,更精确。此外,稀疏的候选目标提议似乎能够提高检测器的...
针对上述这些问题,本篇论文作者提出了fast rcnn网络,可以解决R-CNN和SPPnet的缺点,同时提高其速度和准确性。fast rcnn具有以下优点: 1、高精度检测,训练是单步训练,而loss是multi-task loss。 2、训练可以更新所有网络层,且内存不需要太大。 网络架构
论文地址:https://arxiv.org/pdf/1504.08083.pdf 代码链接:https://github.com/rbgirshick/fast-rcnn. 《Fast R-CNN》是2015年发表在cs.CV上的一篇论文,Fast R-CNN的全称是Fast Region-based Convolutional Network快速的基于区域的卷积神经网络,它是针对目标检测方法R-CNN的改进,主要加快了模型的训练和预测速度...
Fast R-CNN的训练 Fast R-CNN使用了预训练网络进行初始化。论文中实验了小中大三个规模的ImageNet预训练网络,每个网络包括 5 个最大池化层和5~13个卷积层,这三个网络分别是 CaffeNet(AlexNet)、VGG_CNN_M_1024 和 VGG16。试验信息如下表所示: 当使用预训练网络对Fast R-CNN进行初始化时,需要经历三种转换:...
2014年R-CNN横空出世,首次将卷积神经网络带入目标检测领域。受SPPnet启发,rbg在15年发表Fast R-CNN,它的构思精巧,流程更为紧凑,大幅提高目标检测速度。 在同样的最大规模网络上,Fast R-CNN和R-CNN相比,训练时间从84小时减少为9.5小时,测试时间从47秒减少为0.32秒。在PASCAL VOC 2007上的准确率...