RCNN在处理图像时,首先会对图像进行候选框提取,然后对每个候选框进行特征提取和分类。然而,这种做法存在三个主要问题:测试速度慢、训练速度慢和训练所需空间大。Fast R-CNN正是针对这些问题进行了改进。 Fast R-CNN的主要思想是将整张图像归一化后直接送入深度网络,仅在邻接时加入候选框信息。这样,就可以避免对每...
下面我会依次介绍RCNN、FastRCNN、FasterRCNN的原理和演变过程。 RCNN RCNN的框架图如下,它由以下几部分构成:1)区域候选框生成器(Region Proposal Extractor);2)CNN特征提取器;3)SVM分类器根据特征进行分类;4)回归模型用于收紧边界框。 RCNN诞生之时深度学习刚刚兴起,它是深度学习和传统机器学习算法结合的产物,所...
Fast R-CNN 与SPPNet最大的区别就在于,Fast R-CNN不再使用SVM进行分类,而是使用一个网络同时完成了提取特征,判别类别和框回归三项任务。 二、Faster R-CNN原理 Fast R-CNN看似很完美了,但在Fast R-CNN中还存在着一个有点尴尬的问题:它需要先使用Selective Search提取框,这个方法比较慢,同时,检测一张图片,大...
一. 前情提要 FastRCNN使用了ROIPooling使得不同大小的region proposal都可以输入同一个网络进行识别,这样就无需resize,提升了识别的准确率。其次,FastRCNN使用了原图中region proposal的位置映射出feature map中的位置,这样就无需将所有候选框依次输入识别网络,更快更强。 二. FasterRCNN的改进:RPN 在之前的RCNN...
在介绍Faster R-CNN之前,先来介绍一些前验知识,为Faster R-CNN做铺垫。 一、基于Region Proposal(候选区域)的深度学习目标检测算法 Region Proposal(候选区域),就是预先找出图中目标可能出现的位置,通过利用图像中的纹理、边缘、颜色等信息,保证在选取较
Faster R-CNN(RPN + CNN + ROI) R-FCN 等系列方法; 3. 基于深度学习的回归方法:YOLO/SSD/DenseBox 等方法;以及最近出现的结合RNN算法的RRC detection;结合DPM的Deformable CNN等 传统目标检测流程: 1)区域选择(穷举策略:采用滑动窗口,且设置不同的大小,不同的长宽比对图像进行遍历,时间复杂度高) ...
Fast RCNN结构 网络接收整张图片和一系列候选物体作为输入,在图像上使用多个卷积层和最大池化层得到卷积特征,然后在每个候选物体区域上使用RoI(region of interest)池化来得到固定长度的特征向量,再将这些特征向量输入到一系列全连接层中,最后分成两个输出层:1. 使用softmax进行分类,2. 使用bounding box回归得到候选...
在Fast R-CNN中,我们没有像R-CNN中一样对图片进行强制缩放,而是我们在得到特征图上的映射后(也即候选框),将这些候选框进行ROI pooling操作将不同大小的候选框统一缩放至统一的大小,ROI pooling的操作如下图所示:即不论原始特征图大小如何,我们都先将特征图分成7*7=49等份,然后每一份采用最大池化或平...