RCNN的框架图如下,它由以下几部分构成:1)区域候选框生成器(Region Proposal Extractor);2)CNN特征提取器;3)SVM分类器根据特征进行分类;4)回归模型用于收紧边界框。 RCNN诞生之时深度学习刚刚兴起,它是深度学习和传统机器学习算法结合的产物,所以你既可以看到CNN,又可以看到SVM、选择性搜索等算法。它的想法简单朴素...
在RCNN之后的SPPNet虽然解决了重复卷积以及固定输入尺寸的问题,但是依然存在其他的问题,而Fast RCNN则具有更快、更强的性能,不仅训练的步骤可以是端到端,而且Backbone也是基于VGG16来及进行设计的,在训练速度上比RCNN快了将近9倍,在前向推理的速度上快了213倍,并在VOC2012数据集上达到了68.4%的检测率。 注:将...
不使用暴力方法,而是用候选区域方法(region proposal method),创建目标检测的区域改变了图像领域实现物体检测的模型思路,R-CNN是以深度神经网络为基础的物体检测的模型 ,R-CNN在当时以优异的性能令世人瞩目,以R-CNN为基点,后续的SPPNet、Fast R-CNN、Faster R-CNN模型都是照着这个物体检测思路。 步骤(以AlexNet网络...
RPN是Faster R-CNN的核心所在,它是一个全卷积网络,输入是前面cnn提取的特征图,使用3*3的卷积核在特征图上滑动,步长为1,padding为2。同时要引入Anchors的概念。具体操作是在对特征图卷积的同时,以每个卷积核的中心点为anchors的中心,为每个特征点生成长宽比为[1:1,1:2,2:1]的共9个矩形,如下图所示: 图3 ...
图1 R-CNN网络结构图 从图1中可以看出,R-CNN主要包括以下几个方面的内容: ① Extract region proposal,使用selective search的方法提取2000个候选区域; ② Compute CNN features,使用CNN网络计算每个proposal region的feature map; ③ Classify regions,将提取到的feature输入到SVM中进行分类; ...
Faster R-CNN = Fast R-CNN + RPN 如下图,有一个RPN(Region Proposal Network)网络(此时,Faster RCNN已经去除了Selective Search的方案), 在特征图上,找到候选区域后,先进行二分类和回归;如果是正例,进一步地,然后在网络末端进行20分类和回归(还是two-stage)。训练的时候,loss有四项,如下图。
Fast_R-CNN带来的改进 它在多个数据集上取得了比R-CNN与SPP-Net更高的mAP准确率; 使用单个阶段完成目标区域检测;(可以说是最本质的创新) 训练时对所有的层进行同步更新; 因为是单阶段训练所以不需要额外的硬盘空间来存储中间特征。 Fast_R-CNN网络结构 ...
Faster R-CNN(RPN + CNN + ROI) R-FCN 等系列方法; 3. 基于深度学习的回归方法:YOLO/SSD/DenseBox 等方法;以及最近出现的结合RNN算法的RRC detection;结合DPM的Deformable CNN等 传统目标检测流程: 1)区域选择(穷举策略:采用滑动窗口,且设置不同的大小,不同的长宽比对图像进行遍历,时间复杂度高) ...
一、两刀流 R-CNN R-CNN 其实是一个很大的家族,自从 rbg 大神发表那篇论文,子孙无数、桃李满天下。在此,我们只探讨 R-CNN 直系亲属,他们的发展顺序如下: R-CNN -> SPP Net -> Fast R-CNN -> Faster R-CNN -> Mask R-CNN 其实说句良心话,最佩服的并不是 rbg 大神,而是提出了 SPP Net 的以何...
Faster R-CNN(RPN + CNN + ROI) R-FCN 等系列方法; 3. 基于深度学习的回归方法:YOLO/SSD/DenseBox 等方法;以及最近出现的结合RNN算法的RRC detection;结合DPM的Deformable CNN等 传统目标检测流程: 1)区域选择(穷举策略:采用滑动窗口,且设置不同的大小,不同的长宽比对图像进行遍历,时间复杂度高) ...