sklearn.metrics.f1_score(y_true, y_pred, *, labels=None, pos_label=1, average='binary', sample_weight=None, zero_division='warn') 计算F1 分数,也称为平衡 F-score 或 F-measure。 F1 分数可以解释为准确率和召回率的调和平均值,其中 F1 分数在 1 时达到其最佳值,在 0 时达到最差分数。准...
kappa score是一个介于(-1, 1)之间的数. score>0.8意味着好的分类;0或更低意味着不好(实际是随机标签) 代码语言:javascript 代码运行次数:0 运行 AI代码解释 from sklearn.metricsimportcohen_kappa_score y_true=[2,0,2,2,0,1]y_pred=[0,0,2,2,0,2]cohen_kappa_score(y_true,y_pred) . 二、...
from sklearn.metrics import accuracy_score print(accuracy_score(labels , predictions)*100) 1. 2. 召回率 准确率可能会误导人 高准确率有时会使人产生误解。考虑下面的场景: AI检测代码解析 labels = [0,0,0,0,1,0,0,1,0,0] predictions = [0 ,0 ,0 ,0 ,0 , 0 ,0 ,0 ,0 ,0] print(...
3.通过第二步计算结果计算每个类别下的f1-score,计算方式如下: 4. 通过对第三步求得的各个类别下的F1-score求均值,得到最后的评测结果,计算方式如下: 三、python实现 可通过加载sklearn包,方便的使用f1_score函数。 函数原型: sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, average...
3. 通过第二步计算结果计算每个类别下的f1-score,计算方式如下: 4. 通过对第三步求得的各个类别下的F1-score求均值,得到最后的评测结果,计算方式如下: 三、python实现 可通过加载sklearn包,方便的使用f1_score函数。 函数原型: sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, averag...
Precision score = 104 / (3 + 104) = 104/107 = 0.972 可以使用 sklearn.metrics 中的precision_score 方法获得相同的Precision score print('Precision: %.3f' % precision_score(y_test, y_pred)) 应用场景 Precision score可用于需要机器学习模型识别所有阳性示例而没有任何误报的情况。例如,机器学习模型...
第一种方式:accuracy_score # 准确率 import numpy as np from sklearn.metrics import accuracy_score y_pred = [0, 2, 1, 3,9,9,8,5,8] y_true = [0, 1, 2, 3,2,6,3,5,9] #共9个数据,3个相同 accuracy_score(y_true, y_pred) ...
一、sklearn.metrics模块概述 sklearn.metrics是scikit-learn库中用于评估机器学习模型性能的模块。它提供了多种评估指标,如准确率、精确率、召回率、F1分数、混淆矩阵等。这些指标可以帮助我们了解模型的性能,以便进行模型选择和调优。 二、accuracy_score()函数 ...
("Precision",sk.metrics.precision_score(y_true,y_pred))print("Recall",sk.metrics.recall_score(y_true,y_pred))print("f1_score",sk.metrics.f1_score(y_true,y_pred))print("confusion_matrix")print(sk.metrics.confusion_matrix(y_true,y_pred))fpr,tpr,tresholds=sk.metrics.roc_curve(y_...
机器学习-理解Accuracy,Precision,Recall, F1 score以及sklearn实现 Mr.Luyao 目录 收起 混淆矩阵 准确率 精确率 召回率 F1 score 参考资料 目录 混淆矩阵 准确率 精确率 召回率 F1 score 参考资料 在机器学习的分类任务中,绕不开准确率(accuracy),精确率(precision),召回率(recall),PR曲线,F1 score这几个...