对于任意 x,f(-x) = -f(x)。如果一个函数满足这个条件,那么它是奇函数。因为对于任意 x,如果我们将其取反(即-x),然后求函数值,得到的结果再取负号,最终结果应该与原来的 f(x) 相等并且符号相反。如果一个函数 f(x) 是奇函数,那么它不是偶函数。因为偶函数满足的条件是:对于任意 ...
函数有奇函数和偶函数的区别,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数;相反如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数。偶函数的性质:1、偶函数的图象关于y轴对称;2、在偶函数f(x)中,满足f(...
因为从奇函数定义就已经讲明了,定义域关于原点对称,且f(x)=-f(-x)。这里y是变量,可以看成f(y)=xy,因为f(y)=xy=-x(-y)=-f(-y),所以是奇函数,另一个同理。奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)...
是奇函数。也是奇函数。(1)记F(x)=G(x)/H(x), G(x)为奇函数,H(x)为偶函数,如果H(x)有零点,那么也是正负成对的,因此F(x)的定义域仍然关于原点对称。而且F(-x)=G(-x)/H(-x)=-G(x)/H(x)=-F(x)因此F(x)为奇函数。(2)反之也是奇函数。一个偶函数g(x)除以一个...
奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)= - f(x),那么函数f(x)就叫做奇函数(odd function)。一般地,如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数(Even Function)。性质 1. 两个奇函数相加...
证明如下
奇函数没有常数项,每个X项都是奇次,求一次导数之后,x的次数减1,X的次数都变成了偶数,所以就成了偶函数
记F(x)=f[g(x)]——复合函数,则F(-x)=f[g(-x)],如果g(x)是奇函数,即g(-x)=-g(x) ==> F(-x)=f[-g(x)],则当f(x)是奇函数时,F(-x)=-f[g(x)]=-F(x),F(x)是奇函数;当f(x)是偶函数时,F(-x)=f[g(x)]=F(x),F(x)是偶函数。如果g(x)是偶...