论文阅读之Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer(2020) Icy Hunter 如果我真的存在,也是因为你需要我4 人赞同了该文章 目录 收起 Abstract introduction Setup model The Colossal Clean Crawled Corpus Downstream Tasks Input and Output Format Experiments 总结 参...
“T5”指的是作者的模型,作者称之为“Text-to-Text Transfer Transformer”。作者考虑的每项任务——包括翻译、问答和分类——都被视为将作者的模型文本作为输入并对其进行训练以生成一些目标文本。 通过这种统一的方法,作者可以比较不同迁移学习目标,同时通过扩展模型和数据集来探索 NLP 迁移学习的局限性。 作者的工...
文献阅读笔记:Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer(T5),程序员大本营,技术文章内容聚合第一站。
【T5模型】Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer 论文信息 阅读评价 Abstract Introduction Setup Model The Colossal Clean Crawled Corpus Downstream Tasks Input and Output Format Experiments 无监督训练目标与模型架构 无监督训练目标的不同掩码策略 掩码采样率 span长度...
阅读笔记:Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer,程序员大本营,技术文章内容聚合第一站。
Exploring the Limits of Transfer Learning with a Uni?ed Text-to-Text TransformerRaffel, ColinShazeer, NoamRoberts, AdamLee, KatherineNarang, SharanMatena, MichaelYanqi ZhouWei LiLiu, Peter J.Journal of Machine Learning Research
Journal of Machine Learning Research 21 (2020) 1-67 Submitted 1/20; Revised 6/20; Published 6/20 Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer Colin Raffel∗ Noam Shazeer∗ Adam Roberts∗ Katherine Lee∗ Sharan Narang Michael Matena Yanqi Zhou Wei ...
ReadPaper是深圳学海云帆科技有限公司推出的专业论文阅读平台和学术交流社区,收录近2亿篇论文、近2.7亿位科研论文作者、近3万所高校及研究机构,包括nature、science、cell、pnas、pubmed、arxiv、acl、cvpr等知名期刊会议,涵盖了数学、物理、化学、材料、金融、计算机科
Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and...
The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. In the paper, we demonstrate how to achieve state-of-the-art results on multiple NLP tasks using a text-to-text transformer pre-trained...