9. Summary and Conclusion Slice notation is a powerful feature of Python that enables us to extract a subset of a sequence object such as a list, tuple, or string. We covered the syntax of slice notation and pr
Below is an example of how to train and interpret an ExplaiNN model for predicting the binding of the TFs FOXA1, MAX, and JUND. The dataset can be found here.Initialize the modelImports:from matplotlib import pyplot as plt import numpy as np import os import pandas as pd import seaborn ...
frominterpret.glassboximportExplainableBoostingClassifierebm=ExplainableBoostingClassifier()ebm.fit(X_train,y_train)# or substitute with LogisticRegression, DecisionTreeClassifier, RuleListClassifier, ...# EBM supports pandas dataframes, numpy arrays, and handles "string" data natively. ...
import pandas as pd import numpy as np from statsmodels.stats.outliers_influence import variance_inflation_factor import seaborn as sns import matplotlib.pyplot as plt # Sample dataset data = { 'X1': [1, 2, 3, 4, 5], 'X2': [2, 4, 6, 8, 10], 'X3': [5, 4, 3, 2, 1], ...
import numpy as np import pandas as pd # Visualization Libraries import matplotlib.pyplot as plt %matplotlib inline ## Machine learning packages from sklearn.model_selection import train_test_split import xgboost as xgb ## Model Interpretation package ...
explain the pay gap between men and women fresh from college?声明: 本网站大部分资源来源于用户创建编辑,上传,机构合作,自有兼职答题团队,如有侵犯了你的权益,请发送邮箱到feedback@deepthink.net.cn 本网站将在三个工作日内移除相关内容,刷刷题对内容所造成的任何后果不承担法律上的任何义务或责任...
Pandas 教程 NumPy 教程 Flask 教程 Django 教程 PySpark 教程 wxPython 教程 SymPy 教程 Seaborn 教程 SciPy 教程 RxPY 教程 Pycharm 教程 Pygame 教程 PyGTK 教程 PyQt 教程 PyQt5 教程 PyTorch 教程 Matplotlib 教程 Web2py 教程 BeautifulSoup 教程 Java...
一个浮点数代表一个带有小数点的数值。在Swift中,有两种类型的浮点数,即Float和Double。它们都非常相似,但有一些独特的使用情况。 浮点数 它们在Swift语言中代表32位十进制数。当你想存储小精度的浮点数时,浮点数是最好的用例。 浮点数的精度为小数点后6至9位,代表内存中的32位空间...
Data and code for NeurIPS 2022 Paper "Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering". - lupantech/ScienceQA
Load and split your dataset into x_data and y_data #Load Dataset: X_Data, Y_Data#X_Data = Pandas DataFrame#Y_Data = Numpy Array or ListX_data,Y_data=explainx.dataset_heloc() Split dataset into training & testing. X_train,X_test,Y_train,Y_test=train_test_split(X_data,Y_data,...