EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题,其算法基础和收敛有效性等问题在Dempster,Lair
EM算法(Expectation-Maximization Algorithm,期望最大化算法)是一种迭代优化算法,主要用于在含有隐变量(未观测变量)或不完全数据的概率模型中,估计参数的最大似然估计(Maximum Likelihood Estimation, MLE)或最大后验概率估计(Maximum A Posteriori, MAP)。它被广泛应用于各种机器学习问题,如混合高斯模型、隐马尔可夫模型(...
3. Maximization step: Update mixture model parameters (probability weights). 4. Stopping criteria: If stopping criteria are satisfied (convergence of parameters and log-likelihood) then stop, else set j = j + 1 and go to (2). Different from k-means, the EM algorithm does not comput...
最大期望算法(Expectation-Maximization algorithm,EM) 最大期望算法(Expectation-Maximization algorithm,EM) 一、EM算法的广义步骤 二、先写出EM的公式 三、其收敛性的证明 四、公式推导方法1 4.1 E-M步骤公式 4.2
EM算法及其推广-expectation maximization algorithm , where the model depends on unobserved latent variables.EM算法是一种迭代算法用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计EM...WIKI In statistics, anexpectation–maximization(EM) algorithm is an iterative method to find...
EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题。其基本思想是首先根据己经给出的观测数据,估计出模型参数的值;然后...
深入理解机器学习——EM算法/最大期望算法(Expectation-Maximization Algorithm, EM),简要来说,EM算法使用两个步骤交替计算:第一步是期望E步,利用当前估计
The EM (Expectation–Maximization) algorithm is a general-purpose algorithm for maximum likelihood estimation in a wide variety of situations best described as incomplete-data problems. On each iteration of the EM algorithm, there are two steps – called the Expectation step or the E-step and ...
Expectation-Maximization algorithm 1. Introduction The Expectation-Maximization (EM) algorithm is a widely used statistical algorithm formaximum likelihood estimationin cases where there is missing or incomplete data. The basic idea of the EM algorithm is to iteratively estimate the missing data using ...
一、EM算法的预备知识1、极大似然估计 (1)举例说明:经典问题——学生身高问题 我们需要调查我们学校的男生和女生的身高分布。 假设你在校园里随便找了100个男生和100个女生。他们共200个人。将他们按照性别划分…