EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题,其算法基础和收敛有效性等问题在Dempster,Laird和Rubin三人于...
最大期望算法(Expectation-Maximization algorithm,EM) 最大期望算法(Expectation-Maximization algorithm,EM) 一、EM算法的广义步骤 二、先写出EM的公式 三、其收敛性的证明 四、公式推导方法1 4.1 E-M步骤公式 4.2
1、EM算法简介 EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题,其算法基础和收敛有效性等问题在Dempster,Laird...
Expectation-maximization algorithm 定义: 最大期望算法(Expectation-maximization algorithm,又译为期望最大化算法),是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐性变量 计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值; 最大化(M),最大化在 E 步上求...
EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题。其基本思想是首先根据己经给出的观测数据,估计出模型参数的值;然后...
期望最大算法(EM算法)是一种从不完全数据或有数据丢失的数据集(存在隐含变量)中求解概率模型参数的最大似然估计方法。 三、EM算法的初始化研究 1、问题描述 EM算法缺陷之一:传统的EM算法对初始值敏感,聚类结果随不同的初始值而波动较大。总的来说,EM算法收敛的优劣很大程度上取决于其初始参数。 我看了一篇论文...
期望最大化(Expectation Maximization) 算法被称为机器学习十大算法之一,最初是由Ceppellini等人1950 年在讨论基因频率的估计的时候提出的。后来又被Hartley 和Baum 等人发展的更加广泛。目前引用的较...EM(Expectation Maximization)算法原理小结 EM(Expectation Maximization)算法原理小结 1. EM 算法 1.2 为什么需要EM...
EM算法(Expectation-Maximization Algorithm,期望最大化算法)是一种迭代优化算法,主要用于在含有隐变量(未观测变量)或不完全数据的概率模型中,估计参数的最大似然估计(Maximum Likelihood Estimation, MLE)或最大后验概率估计(Maximum A Posteriori, MAP)。它被广泛应用于各种机器学习问题,如混合高斯模型、隐马尔可夫模型...
深入理解机器学习——EM算法/最大期望算法(Expectation-Maximization Algorithm, EM),简要来说,EM算法使用两个步骤交替计算:第一步是期望E步,利用当前估计
Synonyms EM-algorithm Related Concepts Maximum Likelihood Estimation Definition The Expectation Maximization algorithm iteratively maximizes the likelihood of a training sample with respect to unknown parameters of a probability model under the condition of missing information. The training sample is assumed ...