使用repeat函数时需要注意,其中第一个参数是需要在第0维重复的数量,第二个参数是在第1维重复的数量。如果对三阶张量进行repeat操作,那么还有第三个参数。 使用expand_as函数可以直接使用某一个张量的size和device等信息,虽然expand函数也能用于扩展张量中某一维度数据的尺寸,但expand函数需要给定尺寸的大小。
[4]]) 可以看出expand()函数括号里面为变形后的size大小,而且原来的tensor和tensor.expand()是不共享内存的。 tensor.expand_as()函数 >>> b=torch.tensor([[2,2],[3,3],[5,5]]) >>>print(b.size()) torch.Size([3,2]) >>> a.expand_as(b) tensor([[2, 2], [3, 3], [4, 4]])...
在TensorFlow中,与PyTorch中的expand_as函数相似的函数是tf.broadcast_to。 tf.broadcast_to函数可以将一个张量扩展为与目标张量具有相同形状的张量。它通过复制原始张量的值来实现扩展。这个函数在深度学习中非常有用,可以用于广播操作,使得不同形状的张量可以进行元素级别的运算。
Pytorch基础: Tensor数据类型与常用函数 本文使用 Zhihu On VSCode 创作并发布1. Tensor的数据类型在PyTorch中,主要有10种类型的tensor,其中重点使用的为以下八种(还有BoolTensor和BFloat16Tensor): 在具体使用时可以根据网络模… 你头发没了喔 Pytorch tensor变换技巧一 1、实现两个相同维度的tensor,在新的维度下堆...
torch.clamp()函数 参考博客:https://blog.csdn.net/weixin_39504171/article/details/106069230 torch哈达玛积和普通乘积https://zhuanlan.zhihu.com/p/537877779 torch.mean()https://blog.csdn.net/qq_37320017/article/details/124941528 torch.sum()https://blog.csdn.net/qq_37803694/article/details/127399922...
可以看出expand()函数括号里面为变形后的size大小,而且原来的tensor和tensor.expand()是不共享内存的。 tensor.expand_as()函数 >>> b=torch.tensor([[2,2],[3,3],[5,5]]) >>> print(b.size()) torch.Size([3, 2]) >>> a.expand_as(b) ...