max_steps=1875, lr_scheduler_type="constant", optim="paged_adamw_32bit", learning_rate=0.0002, group_by_length=True, bf16=True, warmup_ratio=0.03, max_grad_norm=0.3, ) trainer = AdapterTrainer( model=model, tokenizer=tokenizer, data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=Fa...
self.lr_scheduler_builder = lr_scheduler # Generator and discriminators self.mel_transform = mel_transform self.noise_scheduler_train = DDIMScheduler(num_train_timesteps=1000) self.noise_scheduler_infer = UniPCMultistepScheduler(num_train_timesteps=1000) self.noise_scheduler_infer.set_timesteps(20...
stdhndlr.cpp stdthrow.cpp syncstream.cpp syserror.cpp syserror_import_lib.cpp taskscheduler.cpp thread0.cpp tzdb.cpp ulocale.cpp uncaught_exception.cpp uncaught_exceptions.cpp ushcerr.cpp ushcin.cpp ushclog.cpp ushcout.cpp ushiostr.cpp vector_algorithms.cpp wcerr.cpp wcin.cpp wclog....
正则表达式 1. 使用正则 创建正则表达式有两种方式,一种是以字面量方式创建,另一种是使用RegExp构造...
for i, t in tqdm(enumerate(scheduler.timesteps)): # 准备模型输入:给“带躁”图像加上时间步信息 model_input = scheduler.scale_model_input(x, t) # 预测噪声 with torch.no_grad(): noise_pred = image_pipe.unet(model_input, t)["sample"] ...
from diffusers import DDPMScheduler, UNet2DModel from matplotlib import pyplot as plt device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f'Using device: {device}') # 输出 Using device: cuda 此时会输出运行环境是GPU还是CPU ...
Search or jump to... Search code, repositories, users, issues, pull requests... Provide feedback We read every piece of feedback, and take your input very seriously. Include my email address so I can be contacted Cancel Submit feedback Saved searches Use saved searches to filte...