首先,这个图像不关于任何平行于坐标轴的直线对称,由严格单调性是显然的 然后这个图像有根渐近线y=0 由于对称轴不平行于坐标轴,那么这根渐近线的镜像跟它自己不重合 但图像并不存在另一根渐近线,因此对称轴不存在,可以判断其不是轴对称 f(−x)≠f(x)f(−y)≠f(y)不是轴对称
ezplot('x*y-exp(x+y)')
k:=2;c:=-5;plot(exp(k*t+c),t=-2..2);结果一 题目 如何用maple画指数函数exp(kt+c)图像,k和c都是常数 答案 k和c要事先给定,然后用plot画即可k:=2;c:=-5;plot(exp(k*t+c),t=-2..2);相关推荐 1如何用maple画指数函数exp(kt+c)图像,k和c都是常数 ...
答案 帮忙画下这个函数的图像:x$=$3ylogy$-$$\dfrac {1} {36}$exp$\left [ {-\left ( {36y-\dfrac {36} {e}} \right )^{4}} \right ]$函数如图:相关推荐 1画下这个函数的图像 2画下这个函数的图像x=3ylogy-1/(36)cxp(-(36y-(36)/r)^4] 反馈...
第一步:通过vpasolve函数解出v的表达式,即V=vpasolve(Y==0.8*((v^2)/3)+0.256*(v^3-v),v)。第二步:基于x的取值范围,使用meshgrid函数生成x和y的网格。第三步:计算U和V的值。根据u=1-exp(x)和v的表达式计算出U和V的具体数值。第四步:计算Z的值。将U和V的值代入z=(u^-1+...
首先认识到复指数函数y=exp(j×w×n)在空间中是一个螺旋前进的三维图像,它前进的方向是自变量序列n增大的方向,w是旋转的速度。在右手系中,若令x轴表示n,y轴表示虚部,z轴表示实部,则从n的正方向往原点看去可以发现:当w>0时,图像顺时针旋转接近;当w<0时,图像逆时针旋转接近。
图形
函数如图:结果一 题目 画下这个函数的图像x=3ylogy-exp-(36y-36) 136x 3ylogy{(0y。一36 e 答案 帮忙画下这个函数的图像:x二1 36函数如图:6 4 2 36 1 f(y)=3y-log(y) ( e y- 36 5 10 结果二 题目 画下这个函数的图像x=3ylogy-1/(36)cxp(-(36y-(36)/r)^4] 答案 帮...
正态分布的分布密度函数f(x)=1σ√2πexp{−(x−μ)22σ2},x∈R,其中μ<0的图像是()y fix)片x)fix)yfux)y00x0x0XABCD 答案 答案:C. 解:∵μ<0, ∴正态分布的对称轴应在y轴的左侧,且曲线在x轴上方. 故选C. 结果二 题目 正态分布的分布密度函数f(x)=1σ√2πexp{−(x−μ)...
x=0:2.5:100;y=x.*exp(-2*x);plot(y);