data Df <- data.frame(A = c('0_S','0_S','0_S','0_S','0_S','0_S','1_S','1_S','1_S','1_S','1_S','1_S'), B = c(0,0,1,1,2,2,1,1,1,1,2,2), C = c(0,0,1,1,2,2,0,0,1,1,2,2))DDf = Df %>% group_by(A,B) %>% summarise(n = n...
Well, a Pivot Table summarizes a large amount of data into a simple and easy way that allows the user to see what the important numbers are in the data. You may have thousands of rows of data, with some rows that are less significant than others – so Pivot Table will let you choose...
源数据A1:I7,然后根据姓名和类别(如“个数”,“总额”)找出所有符合条件的和,如单元格B12:D12所...
Note: The examples cover data in a horizontal layout, but in the example file you can download below you’ll find the equivalent formulas for data in vertical layout.Table of Contents Summarise Data into Quarters Video Example File Download Get Quarterly Totals Formula with SUM Sum Data into ...
sep=",")%>%left_join(df2,by="种类")%>%summarise(总价=sum(价格*数量))如果你使用Excel365或...
Sensitivity Analysis without Data Tables In this illustration, the key output revenue has been given in cell G11. We want to summarise what happens if we increase (“flex”) this figure by a given percentage, with the inputs specified in cells F17:F26. This can be simply computed by usin...
filtered_data <- data %>% filter(some_column > 5) 排序:使用arrange()对数据进行排序。 代码语言:javascript 代码运行次数:0 运行 AI代码解释 sorted_data <- data %>% arrange(desc(some_column)) 分组求和:使用group_by()和summarise()进行分组汇总。 代码语言:javascript 代码运行次数:0 运行 AI代...
filtered_data <- data %>% filter(some_column >5) 排序:使用arrange()对数据进行排序。 sorted_data <- data %>% arrange(desc(some_column)) 分组求和:使用group_by()和summarise()进行分组汇总。 grouped_data <- data %>% group_by(group_column) %>% ...
On the right-hand side, you’ll see the PivotTable fields pane that will appear where you’ll do the majority of your work with. When your data is already in a table within Excel, Pivot Table will automatically include everything inside. However, it’s important to note that if your ...
text = c(c("frog friend fresh frink foot"), c("get give gint gobble")), stringsAsFactors = FALSE)df.words %>% mutate(text2 = strsplit(text, split = "\\s")) %>% unnest(text2) %>% semi_join(dict, by = c("text2")) %>% group_by(ID, text) %>% summarise(count = lengt...