Do not use a calculator.相关知识点: 试题来源: 解析 sin 2x= (24)(25), cos 2x=- 7(25), tan 2x=- (24)7 本题考查动名词作宾语。consider 后面需要接动名词作宾语,表示“考虑做某事”。因此,正确答案为 C 选项 sending,表示“考虑让他们的孩子出国留学”。反馈 收藏 ...
Find the exact value of cos (2 sin^{-1} (1 / 3)). Find the value of \tan (a b) if \cos a = \frac{3}{5} \text{ and } \sin b = \frac{5}{13} . Find the value of cos x - 4 tan x if sin x = 3/5. Find the exact value of cos theta for the angle -4pi/3...
Trigonometry is a part of mathematics used to solve the triangle problem. He helps to find the unknown value of the triangle with the help of a given value of the triangle. There are many relationships is provided to solve the equation ...
Find the exact value of cos (sin^{-1} (-3 / 5)). Find the exact value of cos (2 sin^{-1} (1 / 3)). Find the exact value of arccos (sin 3pi/2). Find the exact value of the expression: cos( sin^{-1} (5/13) + cos^{-1} (-12/13)) Find the exact...
The value of tan 90 degrees is undefined. The tangent of an angle is equal to the ratio of sine and cosine of the same angle. Learn how to derive the exact value of tan 90 at BYJU’S.
元4 Find the exact value of x sinxdx. 相关知识点: 试题来源: 解析 Commenc integration and reach 2axcos{{1}\over{2}} x+b\int\cos{{1}\over{2}} xdxObtain -2xcos{{1}\over{2}} x+2\int cos{{1}\over{2}} xdxComplete intergration obtaining -2xcos{{1}\over{2}} x+4sin{{1}...
What is the exact value of {eq}\int_0^4 e^x \,dx {/eq}? Definite Integral: The definite integral of a function {eq}f(x) {/eq} over the interval {eq}[a,b] {/eq} {eq}\displaystyle \int_{a}^{b} f(x) \; dx {/eq} ...
Exact Value Asia M. asked • 11/28/16 Exact Value 12.if cosθ= -3/5 and θ is in quadratic 2, using the double angle formulas, find the exact value of each expression (a) cos (2θ) (b) sin (2θ) Show details in answer please....
3 (i) Find∫tan^24xdx .(ii) Without using a calculator, find the exact value of∫_0^(+∞)(4cos2x+6sin3x)dx. 相关知识点: 试题来源: 解析 (i)Rewrite integrand assec^24x-1 Integrate to obtain tan 4z - r, condoning absence of +c (ii) Integrate to obtain 2 sin 2x - 2 cos ...
This means that f(x,y)=3y2+2x2y+5y−4x3 and the general solution for the equation is 3y2+2x2y+5y−4x3=C. Use f(0)=4 to find the value of C. 3(4)2+2(0)2(4)+5(4)−4(0)3=CC=68 Hence, the particular solution of the exact equation is 3y^2 + 2x^2y +5y -4x...