ex2-e2-2cosx求极限lim x4 相关知识点: 试题来源: 解析 解:原极限 =lim_(x→0)e^(-2cosx)⋅(e^x-2+2cosx-1)/(x^4)=lim_(x→0)(x^2-2+2cosx)/(x^4)=lim_(x→0)\frac(2 =1/2lim_(x+0)(1-cosx)/(3x^2)=1/(12) ...
解析 【解析】 ex2=1+x2+12!(x2)2+o[(x2)]2=1+x2+12x4+o(x4) 2-2cosx=2-2 × [1-12!x2+14!x4+o(x4)]=x2-112x e2-2cosx=ex2-112x4+o(x4)=1+[x2-112x4+o(x4 limx→0ex2-e2-2cosxx4=limx-01+x2+12x4+o(x4 ...
ex2=1+x2+12!(x2)2+o[(x2)]2=1+x2+12x4+o(x4);2−2cosx=2−2×[1−12!x2+14!x4+o(x4)]=x2−112x4+o(x4),e2−2cosx=ex2−112x4+o(x4)=1+[x2−112x4+o(x4)]+12![x2−112x4+o(x4)]2+o(x4)=1+x2+512x4+o(x4)limx→0ex2−e2−2cosxx4=limx→01+...