The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to ...
void phi_table() { phi[1]=1LL; for(int i=2;i<maxn;i++) { if(!phi[i]) { for(int j=i;j<maxn;j+=i) { if(!phi[j]) phi[j]=j; phi[j]=phi[j]/i*(i-1); } } } for(int i=3;i<maxn;i++) { phi[i]+=phi[i-1]; } } int n; int main() { phi_table(...
Uses `Euler's totient function <http://en.wikipedia.org/wiki/Euler%27s_totient_function>`_. """if(num <1):return0if(num ==1):return1if(numinself.primes_table):# 这个素数的table一开始就有了,从别的包导来的,去看定义就是maxnum以内的所有素数returnnum-1pfs = self.prime_factors_only(...
where φ is the Euler phi-function. 3 Proof. Let integer d be such that d|n, and denote A d = {r | 1 ≤ r ≤ n, gcd(r, n) = d}, or what is the same, A d = {r | r = ×d, 1 ≤ ≤ n d , gcd( , n d ) = 1}. Hence it follows that |A d | = φ( n...
在下文中一共展示了euler_phi函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。 示例1: ncusps ▲点赞 6▼ defncusps(self):r""" Return the number of orbits of cusps (regular or otherwise) for this subgroup...
Method/Function: euler_phi 导入包: sageringsarith 每个示例代码都附有代码来源和完整的源代码,希望对您的程序开发有帮助。 示例1 def ncusps(self): r""" Return the number of orbits of cusps (regular or otherwise) for this subgroup. EXAMPLE:: sage: GammaH(33,[2]).ncusps() 8 sage: Gamma...
(i,num) == 1*. Uses `Euler's totient function <http://en.wikipedia.org/wiki/Euler%27s_totient_function>`_. """if(num <1):return0if(num ==1):return1if(numinself.primes_table):# 这个素数的table一开始就有了,从别的包导来的,去看定义就是maxnum以内的所有素数returnnum-1pfs = ...
Möbius function and intervals Polar polygons Distinct terms in a multiplication table Superinteger Smooth divisors of binomial coefficients Empty chairs Super Ramvok Triangle inscribed in ellipse Comfortable Distance II Phigital number base Last digits of divisors ...
Therefore, in order to compute \phi _n\left[ y\right] \left( x\right) at x\in [0,1], we need the values \begin{aligned} \begin{array}{cc} y^{(s)}_k=\phi _n ^{(s)}\left[ y\right] (x_k),\qquad k=0,\ldots , n,\quad s=0,\ldots ,q, \\ \text {with} \;...
The scalar(\Phi )and Dirac(\Upsilon )fields obey the following general-covariant equations: \begin{aligned} \frac{1}{\sqrt{-g}}\partial _\mu \left( \sqrt{-g}g^{\mu \nu }\partial _\nu \Phi \right)= & {} 0, \end{aligned} ...