例子: >>>fromsklearn.metrics.pairwiseimporteuclidean_distances>>>X = [[0,1], [1,1]]>>># distance between rows of X>>>euclidean_distances(X, X) array([[0.,1.], [1.,0.]])>>># get distance to origin>>>euclidean_distances(X, [[0,0]]) array([[1.], [1.41421356]]) 本文...
"""importnumpyasnpimportrandom# 用python的random模块,不用numpy的randomimportmatplotlib.pyplotaspltfromsklearn.datasetsimportmake_blobsfromscipy.spatial.distanceimportpdistfromsklearn.preprocessingimportStandardScalerclasskmeans:# 创建kmeans类# 初始化函数def__init__(self, X=None, K=2, metric='Euler',ep...
我使用了两种方法来计算距离矩阵,一种是使用scipy.spatial.distance.euclidean,另一种是使用scipy.space-...
SVM, PyTorch version, sklearn-based J-Play,Joint & Progressive Learning from High-Dimensional Data for Multi-Label ClassificationECCV 2018, referring to official Matlab version,https://github.com/danfenghong/ECCV2018_J-Play 1D-CNN,Deep Convolutional Neural Networks for Hyperspectral Image Classification...
(K, m_features)pred: 1-d数组,长度为n_samples"""importnumpyasnpimportrandom# 用python的random模块,不用numpy的randomimportmatplotlib.pyplotaspltfromsklearn.datasetsimportmake_blobsfromscipy.spatial.distanceimportpdistfromsklearn.preprocessingimportStandardScalerclasskmeans:# 创建kmeans类# 初始化函数def__...
reshape(1, -1) else: raise ValueError('Invalid dimensions of X1 and X2') if criterion == 'euclidean': return skdists.euclidean_distances(X1loc, X2loc) elif criterion == 'hamming': raise NotImplementedError('Hamming distance between rows of matrices has not been implemented yet.') else: ...
本文简要介绍python语言中sklearn.metrics.pairwise.nan_euclidean_distances的用法。 用法: sklearn.metrics.pairwise.nan_euclidean_distances(X, Y=None, *, squared=False, missing_values=nan, copy=True) 在存在缺失值的情况下计算欧几里得距离。 计算X 和 Y 中每对样本之间的欧几里德距离,如果 Y=None,则...