Euclid algorithm(欧几里得算法)是利用伟大数学家推断出来的一条定理,其中a和b为两个非负整数,GCD(a,b)=GCD(b,a%b),然后利用递归方法将其推出,代码如下: //使用此算法时候,最好先比较一下a和b的大小,还有就是也同时得考虑a为零的情况 public int GCD(int a,int b) { if(b==0) { return a; } e...
This IC is known as Built in Self Test(BIST).In thispaper , we are particularly concentrating upon finding thecomparative parameters of Euclid's and Stein's Algorithm ,which is used to find greatest common divisor(GCD) of two nonnegative integers. Thus, the best parameters to be found can...
Firstly, this thesis introduce the related concepts of the algorithm and some GCD algorithms that current existing, then list a few basic properties of Greatest Common Divisor. Describe the classic Euclid algorithm and its extended, the binary GCD algorithm and its inverse module algorithm, and anal...
# The "greatest common divisor" (gcd) of two integers #+ is the largest integer that will divide both, leaving no remainder. # Euclid's algorithm uses successive division. # In each pass, #+ dividend <--- divisor #+ divisor <--- remainder #+ until remainder = 0. #+ The gcd = d...
encryption-algorithm 各种密码学算法的 C# GUI编程实现,包含: DES AES Present 扩展欧几里得算法 素性检测 最终的结果 DES加密 DES解密 AES加解密 Present 扩展欧几里得算法 素性检测 使用说明(输入输出) 建议使用visual studio 2015打开此项目(解决方案)。 1. DES加密 点击DES选项卡选择DES加密 --> ... ...
GreatestCommonDivisor(GCD)isoneofthebasicsubjectsincomputationalnumbertheory,ithasawideapplicationinencryptionandanalysisofcryptography.ThisthesishasmainlystudyoftheproblemofGCDcalculationforthepositiveintegers. Firstly,thisthesisintroducetherelatedconceptsofthealgorithmandsomeGCDalgorithmsthatcurrentexisting,thenlistafewbasi...
Algorithm: Euclid's algorithm of finding GCD 寻找最大公约数方法 代码如下: 1intgcd (inta,intb) {2returnb ? gcd (b, a %b) : a;3} 应用:求最小公倍数 代码如下: 1intlcm (inta,intb) {2returna / gcd (a, b) *b;3}
clid ’ s Algorithm Euclid ’ s AlgorithmEuclid ’ s AlgorithmDivisor
The Proof Of Euclid Algorithm 以前可能看过,不过真的记不得了,特记录一下,可能不严密,仅供自己理解。 求gcd(a, b),欲证gcd(a, b) = gcd(b, a % b) 设d1 = gcd(a, b), d2 = gcd(b, a % b), a > b且a = qb + r 只需证d1 | d2并且d2 | d1。
Greatest Common Divisor and the Euclidean Algorithm Main Concept The greatest common divisor (GCD) of two integers (not both 0) is the largest positive integer which divides both of them. There are four simple rules which allow us to compute the GCD...