'Low':result.low, 'Volume':result.volume, 'pctChg':result.pctChg} df_daily_stock ...
其次,规模大的ETF,更有可能有更多的做市商提供流动性,参与交易的买家和卖家也更多,因此其流动性更强。流动性强主要体现在卖价和买价的差别(Bid/Ask Spread)比较小,可供买卖的交易量(Volume)比较大。流动性对于投资者来说非常重要,特别是当你最需要现金的时候。 再次,大型的ETF,可能产生的出借股票收入也更多。...
Volume 55,973,324 Alternative ETFs in the ETF Database Large Cap Growth Equities Category TypeSymbolExpense RatioAssetsAvg. Daily VolYTD Return Cheapest BKLC 0.00% $3.3 B 119,645 -3.57% Largest (AUM) VOO 0.03% $619.5 B 6 M -3.47% Most Liquid (Volume) QQQ 0.20% $302.5 B 37 M ...
Daily Volume as of Apr 04, 2025 92,794,210.00 NAIC Designated (Schedule D Eligible) Portfolio Characteristics Number of Holdings as of Apr 03, 2025 47 30 Day SEC Yield as of Apr 03, 2025 4.51% Standard Deviation (3y) as of Feb 28, 2025 ...
SPDR 标准普尔半导体ETF(NYSEARCA: XSD)的交易量异常高 来源:富途牛牛综合 SPDR S&P Semiconductor ETF (NYSEARCA:XSD – Get Rating) saw unusually-strong trading volume on Friday . Approximately 84,087 shares changed hands during mid-day trading, an increase of 22% from the previous session's ...
Create a free account to save articles, sign up for newsletters and more. Continue or sign in with Get the latest updates from U.S. News & World Report and our trusted partners and sponsors. By continuing, you are agreeing to ourTerms and Conditions&Privacy Policy....
Volume 52,336 Net Assets $4.88B Shares Outstanding 26,350,000 Dividends $0.79 (Quarterly) Sector Weightings Fund weight Benchmark weight SECTOR % STOCKS Basic Materials 3.08% Communication Services 4.47% Consumer Cyclical 5.68% Consumer Defensive 10.12% Energy 6.84% Financial Services 22.33%...
富途牛牛是富途證券獨家採用的報價及投資交易軟件,接入富途證券後,其可覆蓋港、美、A、日股及新加坡股主要股票市場以及期權、期貨、槓桿式外匯等多元金融產品。所有設備均適用。提供免費報價,最快0.0037 秒極速落單。 立即下載富途牛牛,體驗一站式投資交易平台,交易從此更快更方便!
Daily Volume as of Mar 14, 2025 950,492.00 Fund Inception Jul 08, 2014 Asset Class Real Estate Bloomberg Index Ticker RNXG Distribution Frequency Quarterly CUSIP 46434V647 Non-FV NAV as of Mar 14, 2025 24.15 30 Day Median Bid/Ask Spread ...
('volume', 6), ('openinterest', -1), # ('fromdate', datetime.datetime(2020, 9, 1)) ('todate', datetime.datetime(2023, 7, 31)), ) def CalculateIndex(df_asset, years): # Calculate daily returns for ETFs and the strategy