二、ESMM网络模型原理解析 模型的主任务(核心目标):模型的核心目标是得到CVR预估,但是模型训练时监督学习的目标label是CTR和CTCVR,不使用CVR的label,所以模型是使用右边的网络显示的学习CTR和CTCV,然后通过三者关系隐式的使用左边网络学习CVR,然后通过共享训练过程中embedding向量使得CTR和CVR、CTCVR训练时互相传递信息,...
我们基于开源AliCCP数据,进行了大量实验,实验部分请期待下一篇文章。实验发现,ESMM的跷跷板现象较为明显,CTR与CVR任务的效果较难同时提升。参考文献 Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate阿里CVR预估模型之ESMMEasyRec-ESMM使用介绍多任务学习模型之ESMM介绍与...
【摘要】 学习总结 ESMM首创了利用用户行为序列数据在完整样本空间建模,并提出利用学习CTR和CTCVR的辅助任务,迂回学习CVR,避免了传统CVR模型经常遭遇的样本选择偏差和训练数据稀疏的问题,取得了显著的效... 学习总结 ESMM首创了利用用户行为序列数据在完整样本空间建模,并提出利用学习CTR和CTCVR的辅助任务,迂回学习CVR,...
在ESMM模型结构中,有两个特点: 第一,在ESMM结构中包含了两个塔,如上图所示,左侧是一个CVR任务的塔,右侧是一个CTR任务的塔,两个塔可以构建两个任务,分别为pCTR和pCTCVR,这样样本分别是从“曝光->点击”和“曝光->转化”,解决了样本空间的问题,通过模型中参数的学习,可以把CVR塔中的参数学习到,这样对于CVR塔...
简介:快看 esmm 模型理论与实践 快看esmm 模型理论与实践 近两年,多目标学习 (Multi-Task Learning,MTL) 甚嚣尘上。除了因为国内外大量互联网公司业务与算法优化步入深水区,需要更复杂的网络来应对复杂的业务之外,很多MTL 深度学习模型结合业务场景进行不断突破的设计思想让人惊艳不已,更是不由得让人敬佩算法工程师...
在ESMM模型结构中,有两个特点: 第一,在ESMM结构中包含了两个塔,如上图所示,左侧是一个CVR任务的塔,右侧是一个CTR任务的塔,两个塔可以构建两个任务,分别为pCTR和pCTCVR,这样样本分别是从“曝光->点击”和“曝光->转化”,解决了样本空间的问题,通过模型中参数的学习,可以把CVR塔中的参数学习到,这样对于CVR塔...
传统的CVR模型(也就是直接对conversion rate建模的模型)在实际应用中面临两个问题(样本选择偏差与数据稀疏性问题)。为了解决这两个问题,本文提出ESMM模型。该模型巧妙地利用用户行为序列去建模这个问题,从而证明(在淘宝的业务场景下)对Post-click conversion Rate 非常有帮助。其实,其实的真实思想就是基于贝叶斯公式去预...
文章基于 Multi-Task Learning (MTL) 的思路,提出一种名为ESMM的CVR预估模型,有效解决了真实场景中CVR预估面临的数据稀疏以及样本选择偏差这两个关键问题。后续还会陆续介绍MMoE,PLE,DBMTL等多任务学习模型。 1、多任务学习背景 目前工业中使用的推荐算法已不只局限...
文章基于 Multi-Task Learning (MTL) 的思路,提出一种名为ESMM的CVR预估模型,有效解决了真实场景中CVR预估面临的数据稀疏以及样本选择偏差这两个关键问题。后续还会陆续介绍MMoE,PLE,DBMTL等多任务学习模型。 1、多任务学习背景 目前工业中使用的推荐算法已不只局限在单目标(ctr)任务上,还需要关注后续的转换链路,如...
文本要实现的深度学习模型是阿里巴巴的算法工程师18年刚发表的论文《Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate》中提出的ESMM模型,关于该模型的详细介绍可以参考我之前的一篇文章:《CVR预估的新思路:完整空间多任务模型》。