Decoder-Only架构的核心是自回归生成机制,即模型通过输入序列的已知部分来预测下一个单词。在GPT模型中,输入和输出共享同一套嵌入,且采用单向注意力机制,即模型只能看到之前的词,而不能看到后面的词。这种机制确保了生成的文本具有连贯性和一致性。 优点与局限: 优点:适用于生成任务,能够生成高质量的文本。 局限:由...
Encoder-Decoder T5 GLM-130B UL2 Decoder-only GPT系列 LLaMA OPT PaLM LaMDA Chinchilla BLOOM 写在最后 系列文章导览 参考资料 开篇 大家好,我是小A。今天给大家带来本系列的第二篇内容,主要介绍LLM基座模型里常见的3种transformer架构,encoder-only,encoder-decoder和decoder-only NLP任务速览 在深入介绍LLM网络...
总的来说,encoder-only类型的更擅长做分类;encoder-decoder类型的擅长输出强烈依赖输入的,比如翻译和文本总结,而其他类型的就用decoder-only,如各种Q&A。虽然encoder-only没有decoder-only类型的流行,但也经常用于模型预训练 Encoder-only架构的LLMs更擅长对文本内容进行分析、分类,包括情感分析,命名实体识别。这里以Bert...
Encoder-Only 架构适用于文本分类和情感分析等任务,其前景主要取决于其在这些任务中的性能和准确性。Decoder-Only 架构适用于文本生成和机器翻译等任务,其前景主要取决于其生成文本的质量和多样性。Encoder-Decoder 架构适用于机器翻译和对话生成等任务,其前景主要取决于其在这些任务中的性能和准确性。 总的来说,这三种...
1. 什么是Encoder-only、Decoder-Only 大模型(Large Language Model,LLM),目前一般指百亿参数以上的语言模型,主要面向文本生成任务。而"encoder-only"和"decoder-only"是两种不同的架构,它们都基于Transformer模型,但在处理输入和生成输出的方式上有所不同。
与Decoder-Only架构不同,Encoder-Only架构专注于理解和分析输入的信息,而不是创造新的内容。这一架构的代表模型包括BERT、RoBERTa和ALBERT等。它们通过编码器对输入文本进行编码,提取其特征和语义信息,然后将这些信息用于后续的处理任务。 Encoder-Only架构在理解和分类任务中表现出色,如文本分类、情感分析、信息抽取和问答...
LLM的3种架构:Encoder-only、Decoder-only、encoder-decoder 个人学习使用, 侵权删 LLM的3种架构:Encoder-only、Decoder-only、encode-decode
由Transformer论文衍生出来的大语言模型,主要有三条技术路线。Encoder-Only:以 谷歌 的BERT为代表。Encoder-Decoder:以 Meta 的BART、 谷歌 的T5、清华大学的GLM为代表。Decoder-Only:以OpenAI的GPT、 谷歌 的Bard、 Meta 的LLaMA、DeepMind的Chinchilla、Anthropic的Cl
针对encoder-decoder、only-encoder、only-decoder三种架构,它们在推理过程中的不同步骤和方式如下: 1.Encoder-Decoder架构: -输入序列通过编码器(Encoder)进行编码,生成一个上下文向量或隐藏状态。 -上下文向量被传递给解码器(Decoder),并作为其初始状态。 -解码器根据上下文向量和已生成的部分输出,逐步生成目标...
在自然语言处理(NLP)的广阔领域中,Encoder-Decoder和Decoder-Only模型作为两种重要的神经网络架构,各自扮演着不可或缺的角色。本文将从模型结构、应用场景及技术优势三个方面,对这两种模型进行深度解析。 一、模型结构差异 Encoder-Decoder模型: 结构概述:Encoder-Decoder模型由两部分组成:编码器(Encoder)和解码器(Decoder...