大模型结构 Encoder-only Encoder-Decoder Decoder-only 最近这段时间一直在研究这个大模型的能力到底来源于哪里?对于大模型的是否智能?有像图灵奖得主Yann LeCun这样持反对意见的,也有图灵奖得主Hinton持支持意见的,作为一名从业人员,我们先从模型架构的角度来解剖大模型,看看大模型到底是什么样的?目前大模型基于Transfor...
Encoder-Only架构,也称为单向架构,仅包含编码器部分。它主要用于处理那些不需要生成输出序列的任务,如文本分类、情感分析等。Encoder-Only架构的代表模型包括BERT、RoBERTa和ALBERT等。 2.2 工作原理 Encoder-Only架构通过编码器对输入文本进行编码,提取其特征和语义信息,然后将这些信息用于后续的处理任务。由于缺少解码器部...
在自然语言处理(NLP)的广阔领域中,Encoder-Decoder和Decoder-Only模型作为两种重要的神经网络架构,各自扮演着不可或缺的角色。本文将从模型结构、应用场景及技术优势三个方面,对这两种模型进行深度解析。 一、模型结构差异 Encoder-Decoder模型: 结构概述:Encoder-Decoder模型由两部分组成:编码器(Encoder)和解码器(Decoder...
Encoder-only (BERT) 虽然GPT1出现的时间比BERT早,但BERT的影响力貌似更大一下,所以我们以BERT为引子介绍transformer的基本结构 gemm-like算子 宏观上看BERT的结构非常简单,Base和Large模型分别由基础的transformer block重复12次和24次组成 BERT-base和BERT-large transformer block详细结构网上资料很多,这里尝试从数据流...
Encoder-Only架构的大模型有谷歌的BERT、智谱AI发布的第四代基座大语言模型GLM4等。其中,BERT是基于Encoder-Only架构的预训练语言模型。GLM4是智谱AI发布的第四代基座大语言模型,该模型在IFEval评测集上,在Prompt提示词跟随(中文)方面,GLM-4达到了GPT-4 88%的水平。
由Transformer论文衍生出来的大语言模型,主要有三条技术路线。 Encoder-Only:以谷歌的BERT为代表。 Encoder-Decoder:以Meta的BART、谷歌的T5、清华大学的GLM为代表。 Decoder-Only:以OpenAI的GPT、谷歌的Bard、Meta的LLaMA、DeepMind的Chinchilla、Anthropic的Claude为代表。
encoder- decoder、encoder-only、decoder-only都是Transformer系列模型,代表模型分别是T5、BERT、GPT,他们的原理可以参考Transformer模型及其变种(BERT、GPT)这个文章,至于为什么大模型倾向于decoder-only,主要有以下几个点: 从任务角度回答: 目前的大模型应该说是生成式大模型,主要是以序列生成为目标和主要场景,这对于BER...
Models like BERT and T5 are trained with an encoder only orencoder-decoderarchitectures. These models have demonstrated near-universal state of the art performance across thousands of natural language tasks. That said, the downside of such models is that they require a significant number of task-...
一是“仅编码器(encoder-only)”组(上图中的粉色部 分),该类语言模型擅长文本理解, 因为它们允许信息在文本的两个方向上流动。二是“仅解码器(decoder-only)”组(上图中的蓝色部分),该类语言模型擅长文本生成, 因为信息只能从文本的左侧向右侧流动, 以自回归方式 有效生成新词汇。三是“编码器-解码器(...