CNN叠加Attention方式如下: 在卷积操作前做Attention:比如Attention-Based BCNN-1,对两段输入的序列向量进行Attention,计算出特征向量,再拼接到原始向量中,作为卷积层的输入。 在卷积操作后做Attention:比如Attention-Based BCNN-2,对两段文本的卷积层的输出做Attention,作为池化层的输入。 在池化层做Attention:比如Atten...
编码器-解码器注意力层(Encoder-Decoder Attention Layer)是Transformer架构中的一个重要组成部分,它连接了编码器和解码器,使得解码器在生成每个输出时能够参考编码器的输出,从而捕捉到输入序列中的相关信息。以下是对编码器-解码器注意力层的详细解析: 一、作用与原理 编码器-解码器注意力层的主要作用是帮助解码器根...
想更好地理解BERT,要先从它的主要部件-Transformer入手,同时,也可以延伸到相关的Attention机制及更早的Encoder-Decoder架构。本文参考了网上一些写得比较好的博文,梳理了从Encoder-Decoder到Attention机制、Transformer的应用和发展(着重讲解Attention机制和Transformer,想更深入了解Encoder-Decoder结构可以跳转到对应章节的参考...
Encoder-Decoder模型 Encoder-Decoder将现实问题转化为数学问题,通过求解数学问题,从而解决现实问题。 Encoder 又称作编码器。它的作用就是“将现实问题转化为数学问题”。 Decoder 又称作解码器,他的作用是“求解数学问题,并转化为现实世界的解决方案”。 特点: 不论输入和输出的长度是什么,中间的“上下文向量 ” 长度...
在深度学习的广阔领域中,Encoder-Decoder模型与Attention机制以其独特的优势,成为了处理序列到序列(Seq2Seq)任务的重要工具。本文将从模型原理、工作机制到实际应用,带领大家深入理解这两个核心概念。 Encoder-Decoder模型 定义与原理 Encoder-Decoder模型,即编码器-解码器模型,是深度学习中常见的一种框架。其核心思想是...
1.Encoder-Decoder模型及RNN的实现 encoder-decoder模型虽然非常经典,但是局限性也非常大。最大的局限性就在于编码和解码之间的唯一联系就是一个固定长度的语义向量C。也就是说,编码器要将整个序列的信息压缩进一个固定长度的向量中去。但是这样做有两个弊端,一是语义向量无法完全表示整个序列的信息,还有就是先输入的...
Encoder-Decoder、Seq2Seq、Attention 传送门1:Encoder-Decoder 和 Seq2Seq 因为注意力不集中,所以这篇随笔就是看别人的文章,随手参考写写的。 1.Encoder-Decoder Encoder-Decoder模型并不特指某种具体算法,而是一种通用的框架,这个框架下可以使用不同的算法来解决不同的任务。
例如,在文本摘要任务中,Seq2Seq模型结合Attention机制可以生成更加准确、简洁的摘要;在对话系统中,通过引入Attention机制,模型可以更好地理解用户的意图和上下文信息,从而生成更加自然、流畅的回复。 结语 Encoder-Decoder框架、Seq2Seq模型以及Attention机制是自然语言处理领域的三大法宝,它们不仅推动了机器翻译等任务的巨大进...
Attention机制在Encoder-Decoder结构中加入了一层额外的权重,允许Decoder在生成每一个输出词时,能够有选择性地关注输入序列中的不同部分。这种机制通过计算输入序列中每个词与当前输出的关联度,从而在解码过程中对输入序列中的信息进行动态加权,以增强输出的准确性和上下文一致性。具体而言,Attention机制通过...
人工智能-机器学习-深度学习-自然语言处理(NLP)-生成模型:Seq2Seq模型(Encoder-Decoder框架、Attention机制),程序员大本营,技术文章内容聚合第一站。