Decoder中的多头self-attention层与Encoder模块一致, 但需要注意的是Decoder模块的多头self-attention需要做look-ahead-mask, 因为在预测的时候"不能看见未来的信息", 所以要将当前的token和之后的token全部mask. Decoder Block中的Encoder-Decoder attention层 这一层区别于自注意力机制的Q = K = V, 此处矩阵Q来源...
Encoder-Decoder架构本质上是一种处理序列数据的通用框架,其核心思想是将输入序列编码成一个固定长度的向量(或向量序列),然后解码该向量以生成输出序列。这一框架在NLP领域的应用极为广泛,包括但不限于机器翻译、文本摘要、对话系统等。 Encoder部分 Encoder的主要任务是将输入序列(如一句话、一篇文章)转化成一个中间语...
但我们可以想象一个简化的Encoder-Decoder框架图,其中Encoder将输入序列编码成一个向量,Decoder则根据这个向量和已生成的历史信息逐步生成输出序列。在引入Attention机制后,Decoder在生成每个输出时都会与Encoder的隐藏状态进行Attention计算,从而得到更加准确的上下文向量。 结论 Encoder-Decoder框架是NLP领域中的一个重要模型结...
Transformer用于执行翻译任务,实验表明,这一模型表现极好,可并行化,并且大大减少训练时间。其本质上是一个Encoder-Decoder的结构,编码器由6个编码block组成(encoder每个block由self-attention,FFNN组成),同样解码器是6个解码block组成(decoder每个block由self-attention,encoder-decoder attention以及FFNN组成),与所有的生成模...
Encoder-Decoder 是 NLP 领域里的一种模型框架。它被广泛用于机器翻译、语音识别等任务。本文将详细介绍 Encoder-Decoder、Seq2Seq 以及他们的升级方案Attention。 什么是 Encoder-Decoder ? Encoder-Decoder 模型主要是 NLP 领域里的概念。它并不特值某种具体的算法,而是一类算法的统称。Encoder-Decoder 算是一个通用...
从transformer开始,nlp的模型渐渐开始成为了transformer一族的天下,所以想写一个系列聊一聊在nlp中那些运用transformer的模型。 作为这个系列的第一篇,就从大名鼎鼎的transformer结构开始。 一、编码器(encoder)与解码器(decoder) 最早提出transformer的文章是attention is all you need,研究的nlp的任务是翻译,自然而然就...
这里肯定还有读者会问,decoder-only模型之前在效果上是比不过encoder模型的,如果从以上两个条件看,似乎不能够解释为什么decoder-only模型比encoder好。这里就要提到了模型的尺寸问题了。在NLP的模型中,通常都是模型越大,效果越好。在Bert流行的年代,模型最大尺寸也不过300MB左右,但是GPT3的尺寸直接暴涨到了1750B。从研...
语音识别也有很强的序列特征,比较适合 Encoder-Decoder 模型。 Google 发表的使用Seq2Seq做语音识别的论文《A Comparison of Sequence-to-Sequence Models for Speech Recognition》 图像描述生成(图片 - 文本) 通俗的讲就是「看图说话」,机器提取图片特征,然后用文字表达出来。这个应用是计算机视觉和 NLP 的结合。
Part-1:EncoderDecoder 模型 全称Encoder Decoder,即编码器解码器,是自然语言生成中最重要的里程碑。它的思想是用一个编码器,如循环神经网络(RNN),卷积神经网络(CNN)等将一段输入的文本编码成连续空间的向量,然后再用一个解码器(一般都...
Seq2Seq模型有时可以包含自编码和自回归模型。Seq2Seq模型的decoder通常是自回归的,它根据之前的所有token,一次生成一个token的输出序列。 Seq2Seq的encoder部分可以看作类似自编码器,因为它将输入压缩成密集表示,但是与自编码器LM不同的是,seq2seq的encoder目标不是重建输入,而是为生成的输出序列(通常是不同domain...