一、Encoder-Decoder算法原理 Encoder-Decoder算法由两个主要组件组成,即编码器(Encoder)和解码器(Decoder)。编码器负责将输入序列转换为其表示,解码器则将该表示映射到输出序列上。下面我们将分别介绍编码器和解码器的具体原理。 1.编码器(Encoder) 编码器的主要目标是将输入序列转换为其表示。为了实现这一点,编码器通常使用
Decoder (解码器):“求解数学问题,并转化为现实世界的解决方案” Decoder解码器 Seq2Seq(*Sequence-to-sequence):*输入一个序列,输出另一个序列** Seq2Seq(序列到序列):强调模型的目的——将输入序列转换为输出序列。 Encoder-Decoder(编码器-解码器):强调模型的实现方法——提供实现这一目的的具体方法或架构。
Encoder-Decoder算法是一种深度学习模型结构,广泛应用于自然语言处理(NLP)、图像处理、语音识别等领域。它主要由两部分组成:编码器(Encoder)和解码器(Decoder)。如图1所示,这种结构能够处理序列到序列(Seq2Seq)的任务,如机器翻译、文本摘要、对话系统、声音转化等。 图1 编码器-解码器结构 编码器(Encoder) 编码器的...
这种机制有助于提高解码的准确性和效率,尤其是在处理长序列数据时。 三、Encoder-Decoder框架 Encoder-Decoder框架是一种将编码器和解码器结合使用的通用架构,特别适用于处理序列到序列的任务。该框架首先通过编码器将输入序列转换为编码状态,然后利用解码器根据编码状态和已生成的部分目标序列逐步生成最终的目标序列。 1...
Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义,并发现它们之间的隐藏关系。解码器依托编码器提供的深入洞察,负责生成所需的输出,无论是将句子翻译成另一种语言、生成一个精确的摘要,还是写代码。
1. Decoder的问题 传统seq2seq是按照时间顺序展开,所以decoder就是按照time,一步一步输入。 【深度学习】NLP之Transformer (1) 中介绍了,transformer是并行的,就是说这个句子,在一开始输入再经过encoder就能得到每个词的r1、r2 ... 了。 所以decoder这里又是如何进行的呢?
降维算法——自编码器(Autoencoders)降维算法——自编码器(Autoencoders)是一种无监督的神经网络,主要用于数据的压缩和特征学习。它们通过学习输入数据的表示来重构输入数据。自编码器由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器将输入数据压缩成较低维度的表示,而解码器则将这个表示重构回原始...
Encoder-Decoder 是一个 End-to-End 的学习算法,以机器翻译为例,可以将法语翻译成英语。这样的模型也可以叫做 Seq2Seq。 Seq2Seq( Sequence-to-sequence ) 输入序列和输出序列的长度是可变的。 Seq2Seq 强调目的,不特指具体方法,满足输入序列,输出序列的目的,都可以统称为 Seq2Seq 模型。
自动编码器由编码器(Encoder)和解码器(Decoder)两部分组成。编码器将输入数据映射到一个低维表示,而解码器将这个低维表示映射回原始输入空间,以重构输入数据。在训练过程中,自动编码器通过最小化重构误差来学习有效的表示。 自动编码器的基本结构可以分为两类:全连接自动编码器和卷积自动编码器。全连接自动编码器由...