今天我们就来全面拆解 Transformer 的 Encoder 与 Decoder 内部模块结构,并附上一个动手小测验:画出 Transformer 的完整流程图,帮助大家真正掌握这个强大的架构。 一、Transformer 总览 Transformer 的核心是:自注意力机制(Self-Attention)+ 前馈神经网络(Feed Forward Network),通过堆叠多层
encoder和decoder是如何传递信息的?(cross attention) 解码阶段 Decoder细节 Encoder结构 block是多层的一个表示,input的每个token都对应一个output的一个tokenself-attention的输出做残差连接后再继续做层归一化 残差连接(Residual Connection):output1 = self-attention(token_vector) + token_vector 层归一化(Layer ...
除了我们所看到的结合了 encoder 和 decoder 的Transformer 架构之外,BART(Bidirectional Auto-Regressive Transformers)和 T5(Text-To-Text Transfer Transformer)模型也属于此类。 实际上,decoder-only 架构和 encoder-only 架构的应用程序之间的区别有点模糊。例如,GPT 系列中的纯 decoder 模型可以为翻译等任务做好准备...
encoder和decoder结构都是基于Transformer模型。最初这种encoder-decoder结构其实是用作翻译任务的结构,其中encoder负责编码输入,decoder负责解码输出。其大概结构如下图所示。 因为Encoder模块和Decoder模块都是Transformer结果,所以,整个模型结构图如下 实际上,Transformer结构的成功从当时看直接霸榜了各个公共数据集的leaderboard...
答案就藏在它的Encoder-Decoder架构中。 一、Transformer概览 Transformer模型由两大部分组成:Encoder(编码器)和Decoder(解码器)。简单来说,Encoder负责将输入数据(如一句话)转换成一种中间表示(通常称为embeddings),而Decoder则根据这种中间表示生成目标输出(如另一语言的句子)。这种架构使得Transformer能够处理序列到序列...
几乎所有主流的大模型都是基于 Transformer 网络架构构建的,Transformer 的重要性不言而喻。大模型可以类比人类的大脑,那么 Transformer 就可以类比人类大脑中的神经网络结构。 Transformer 网络结构最核心的组成部分为:编码器(Encoder)和解码(Decoder)。 编码器负责提取信息,通过细致分析输入文本,理解文本中各个元素的含义...
Transformer的Encoder-Decoder编码器-解码器结构,这种结构被广泛应用于处理序列格式的数据(Seq2Seq);编码器和解码器是其组成部分的核心结构。 编码的过程是一个模式提取的过程,它的作用是把输入句子的特征提取出来;比如句子的文字,语义关系等;而解码的过程是一个模式重建的过程,它是根据编码器获取的模式特征生成新的我...
本文深入浅出地探讨了Encoder-Decoder架构、Seq2Seq模型以及Transformer模型之间的关系,通过实例和生动的语言解释了这些复杂概念,并强调了它们在实际应用中的价值。
这样看在Transformer中主要部分其实就是编码器Encoder与解码器Decoder两个部分; 编码器: 编码器部分是由多头注意力机制,残差链接,层归一化,前馈神经网络所构成。 先来了解一下多头注意力机制,多头注意力机制是由多个自注意力机制组合而成。 自注意力机制:
2.3 transformer中的使用 2.3.1transformer中decoder的组成 在transformer中decoder 也是由 6 个相同的层组成,每个层包含 3 个部分: Multi-Head Self-Attention Multi-Head Context-Attention Position-Wise Feed-Forward Network 2.3.2 transformer中encoder和decoder的区别 ...