Seq2seq模型也成为Encoder-Decoder模型,顾名思义,这个模型有两个模块,Encoder(编码器)和Decoder(解码器),编码器对输入数据进行编码,解码器对被编码的数据进行解析,编码是基于既定规则的信息转换过程,以字符为例,将字符”A”转换为“1000001”(二进制)就是一个编码的例子,而解码则将被编码的信息还原到它的原始形态...
Encoder-Decoder是一个十分通用的计算框架,其使用的具体模型如,CNN/RNN/Bi-RNN/GRU/LSTM/Deep LSTM等可根据不同的场景需求确定。此外,Encoder-Decoder框架其本质是实现直观表示(例如词序列或图像)和语义表示之间来回映射。故通过该框架我们可以使用来自一种模态数据的编码器输出作为用于另一模态的解码器输入,以实现将...
所以,在文本序列的Encoder-Decoder模型中,原本RNN(LSTM)语言模型是要估计p(y1,y2,…yT|x1,x2,...,xT′),给定一串输入x,得到一串输出y(不需要等长),但是因为Encoder-Decoder中间用语义编码c把前后两部分隔开了,所以输出句子y只需要和c相关即可。 只要端到端训练RNN(LSTM)网络就可以了,在每一个句子末尾打上...
print( 'Loss: %f, Accuracy: %f' % (loss, acc*100)) 表 9.27 评价拟合 Encoder-Decoder LSTM 拟合的例子 运行该示例同时打印模型的 log 损失和准确性。由于神经网络的 随机性,您的特定值可能有所不同,但是模型的精度应该是在 90%以 内的。 1. Loss: 0.128379, Accuracy: 100.000000 表 9.28 评估拟合...
Encoder-Decoder 框架是深度学习中非常常见的一个模型框架,例如在 Image Caption 的应用中 Encoder-Decoder 就是 CNN-RNN 的编码 - 解码框架;在神经网络机器翻译中 Encoder-Decoder 往往就是 LSTM-LSTM 的编码 - 解码框架,在机器翻译中也被叫做 Sequence to Sequence learning 。
encoder decoder 模型理解 encoder decoder 模型是比较难理解的,理解这个模型需要清楚lstm 的整个源码细节,坦率的说这个模型我看了近十天,不敢说完全明白。 我把细胞的有丝分裂的图片放在开头,我的直觉细胞的有丝分裂和这个模型有相通之处 定义训练编码器
— Show and Tell: A Neural Image Caption Generator, 2014. 图9.1 Encoder-decoder LSTM结构 9.2.3 应用 下面的列表突出了Encoder-Decoder LSTM结构的一些有趣的应用。 机器翻译,如短语的英译法语。 学习执行,例如小程序的计算结果; 图像标题,例如用于生成图像; ...
[参考1]论文中提出的seq2seq模型可简单理解为由三部分组成:Encoder、Decoder 和连接两者的 State Vector (中间状态向量) C 。 上图中Encoder和Decoder可以是一个RNN,但通常是其变种LSTM或者GRU。Encoder和Decoder具体介绍请见第三部分。 第二种结构 该结构是最简单的结构,和第一种结构相似,只是Decoder 的第一个时...
[参考1]论文中提出的seq2seq模型可简单理解为由三部分组成:Encoder、Decoder 和连接两者的 State Vector (中间状态向量) C 。 RNN encoder-decoder 上图中Encoder和Decoder可以是一个RNN,但通常是其变种LSTM或者GRU。Encoder和Decoder具体介绍请见第三部分。
最基础的Seq2Seq模型包含了三个部分,即Encoder、Decoder以及连接两者的中间状态向量,Encoder通过学习输入,将其编码成一个固定大小的状态向量S,继而将S传给Decoder,Decoder再通过对状态向量S的学习来进行输出。 图中每一个box代表了一个RNN单元,通常是LSTM或者GRU。其实基础的Seq2Seq是有很多弊端的,首先Encoder将输入编...